teo_V {sinar} | R Documentation |
Compute the value of matrix V using the coefficients.
Description
V
is the theoretical matrix from Klimko-Nelson for the SINAR(1,1)
model. Basically, we know
\sqrt{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} -
a_{11}, \hat{\mu}_\epsilon - \mu_\epsilon)^\top \sim MNV(0, \Sigma)
where
\Sigma = V^{-1}W V^{-1}.
For more details, check Klimko and Nelson (1978).
Usage
teo_V(a10, a01, a11, mu_e, s2_e)
Arguments
a10 |
is the parameter in the equation |
a01 |
is the parameter in the equation |
a11 |
is the parameter in the equation |
mu_e |
is the mean of the innovations |
s2_e |
is the standar deviation of the innovations |
Value
The matrix V estimated empirically.
Examples
n_row <- 20
n_col <- 50
a10 <- 0.2
a01 <- 0.2
a11 <- 0.5
l <- 1 # mean and variance for poison innovations
teo_V(a10, a01, a11, l, sqrt(l))