fit_pwexp {simtrial} | R Documentation |
Piecewise exponential survival estimation
Description
Computes survival function, density function, -2 * log-likelihood based on input dataset and intervals for piecewise constant failure rates. Initial version assumes observations are right censored or events only.
Usage
fit_pwexp(
srv = Surv(time = ex1_delayed_effect$month, event = ex1_delayed_effect$evntd),
intervals = array(3, 3)
)
Arguments
srv |
Input survival object (see |
intervals |
Vector containing positive values indicating interval lengths where the exponential rates are assumed. Note that a final infinite interval is added if any events occur after the final interval specified. |
Value
A matrix with rows containing interval length, estimated rate, -2 * log-likelihood for each interval.
Examples
# Use default arguments for delayed effect example dataset (ex1_delayed_effect)
library(survival)
# Example 1
rateall <- fit_pwexp()
rateall
# Example 2
# Estimate by treatment effect
rate1 <- with(subset(ex1_delayed_effect, trt == 1), fit_pwexp(Surv(month, evntd)))
rate0 <- with(subset(ex1_delayed_effect, trt == 0), fit_pwexp(Surv(month, evntd)))
rate1
rate0
rate1$rate / rate0$rate
# Chi-square test for (any) treatment effect (8 - 4 parameters = 4 df)
pchisq(sum(rateall$m2ll) - sum(rate1$m2ll + rate0$m2ll),
df = 4,
lower.tail = FALSE
)
# Compare with logrank
survdiff(formula = Surv(month, evntd) ~ trt, data = ex1_delayed_effect)
# Example 3
# Simple model with 3 rates same for each for 3 months,
# different for each treatment after months
rate1a <- with(subset(ex1_delayed_effect, trt == 1), fit_pwexp(Surv(month, evntd), 3))
rate0a <- with(subset(ex1_delayed_effect, trt == 0), fit_pwexp(Surv(month, evntd), 3))
rate1a$rate / rate0a$rate
m2ll0 <- rateall$m2ll[1] + rate1a$m2ll[2] + rate0a$m2ll[2]
m2ll1 <- sum(rate0$m2ll) + sum(rate1$m2ll)
# As a measure of strength, chi-square examines improvement in likelihood
pchisq(m2ll0 - m2ll1, df = 5, lower.tail = FALSE)
[Package simtrial version 0.4.1 Index]