simmr_mcmc {simmr} | R Documentation |
Run a simmr_input
object through the main simmr Markov chain Monte
Carlo (MCMC) function
Description
This is the main function of simmr. It takes a simmr_input
object
created via simmr_load
, runs an MCMC to determine the dietary
proportions, and then outputs a simmr_output
object for further
analysis and plotting via summary.simmr_output
and
plot.simmr_output
.
Usage
simmr_mcmc(
simmr_in,
prior_control = list(means = rep(0, simmr_in$n_sources), sd = rep(1,
simmr_in$n_sources), sigma_shape = rep(3, simmr_in$n_tracers), sigma_rate = rep(3/50,
simmr_in$n_tracers)),
mcmc_control = list(iter = 10000, burn = 1000, thin = 10, n.chain = 4)
)
Arguments
simmr_in |
An object created via the function |
prior_control |
A list of values including arguments named: |
mcmc_control |
A list of values including arguments named |
Details
If, after running simmr_mcmc
the convergence diagnostics in
summary.simmr_output
are not satisfactory, the values of
iter
, burn
and thin
in mcmc_control
should be
increased by a factor of 10.
Value
An object of class simmr_output
with two named top-level
components:
input |
The |
output |
A set of MCMC chains of class
|
Author(s)
Andrew Parnell <andrew.parnell@mu.ie>
References
Andrew C. Parnell, Donald L. Phillips, Stuart Bearhop, Brice X. Semmens, Eric J. Ward, Jonathan W. Moore, Andrew L. Jackson, Jonathan Grey, David J. Kelly, and Richard Inger. Bayesian stable isotope mixing models. Environmetrics, 24(6):387–399, 2013.
Andrew C Parnell, Richard Inger, Stuart Bearhop, and Andrew L Jackson. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5(3):5, 2010.
See Also
simmr_load
for creating objects suitable for this
function, plot.simmr_input
for creating isospace plots,
summary.simmr_output
for summarising output, and
plot.simmr_output
for plotting output.
Examples
## Not run:
## See the package vignette for a detailed run through of these 4 examples
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
simmr_1 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_1)
# Print
simmr_1
# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)
# Print it
print(simmr_1_out)
# Summary
summary(simmr_1_out, type = "diagnostics")
summary(simmr_1_out, type = "correlations")
summary(simmr_1_out, type = "statistics")
ans <- summary(simmr_1_out, type = c("quantiles", "statistics"))
# Plot
plot(simmr_1_out, type = "boxplot")
plot(simmr_1_out, type = "histogram")
plot(simmr_1_out, type = "density")
plot(simmr_1_out, type = "matrix")
# Compare two sources
compare_sources(simmr_1_out, source_names = c("Zostera", "Enteromorpha"))
# Compare multiple sources
compare_sources(simmr_1_out)
#####################################################################################
# A version with just one observation
data(geese_data_day1)
simmr_2 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures[1, , drop = FALSE],
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_2)
# MCMC run - automatically detects the single observation
simmr_2_out <- simmr_mcmc(simmr_2)
# Print it
print(simmr_2_out)
# Summary
summary(simmr_2_out)
summary(simmr_2_out, type = "diagnostics")
ans <- summary(simmr_2_out, type = c("quantiles"))
# Plot
plot(simmr_2_out)
plot(simmr_2_out, type = "boxplot")
plot(simmr_2_out, type = "histogram")
plot(simmr_2_out, type = "density")
plot(simmr_2_out, type = "matrix")
#####################################################################################
# Data set 2: 3 isotopes (d13C, d15N and d34S), 30 observations, 4 sources
data(simmr_data_2)
simmr_3 <- with(
simmr_data_2,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Get summary
print(simmr_3)
# Plot 3 times
plot(simmr_3)
plot(simmr_3, tracers = c(2, 3))
plot(simmr_3, tracers = c(1, 3))
# See vignette('simmr') for fancier axis labels
# MCMC run
simmr_3_out <- simmr_mcmc(simmr_3)
# Print it
print(simmr_3_out)
# Summary
summary(simmr_3_out)
summary(simmr_3_out, type = "diagnostics")
summary(simmr_3_out, type = "quantiles")
summary(simmr_3_out, type = "correlations")
# Plot
plot(simmr_3_out)
plot(simmr_3_out, type = "boxplot")
plot(simmr_3_out, type = "histogram")
plot(simmr_3_out, type = "density")
plot(simmr_3_out, type = "matrix")
#####################################################################################
# Data set 5 - Multiple groups Geese data from Inger et al 2006
# Do this in raw data format - Note that there's quite a few mixtures!
data(geese_data)
simmr_5 <- with(
geese_data,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means,
group = groups
)
)
# Plot
plot(simmr_5,
xlab = expression(paste(delta^13, "C (per mille)", sep = "")),
ylab = expression(paste(delta^15, "N (per mille)", sep = "")),
title = "Isospace plot of Inger et al Geese data"
)
# Run MCMC for each group
simmr_5_out <- simmr_mcmc(simmr_5)
# Summarise output
summary(simmr_5_out, type = "quantiles", group = 1)
summary(simmr_5_out, type = "quantiles", group = c(1, 3))
summary(simmr_5_out, type = c("quantiles", "statistics"), group = c(1, 3))
# Plot - only a single group allowed
plot(simmr_5_out, type = "boxplot", group = 2, title = "simmr output group 2")
plot(simmr_5_out, type = c("density", "matrix"), grp = 6, title = "simmr output group 6")
# Compare sources within a group
compare_sources(simmr_5_out, source_names = c("Zostera", "U.lactuca"), group = 2)
compare_sources(simmr_5_out, group = 2)
# Compare between groups
compare_groups(simmr_5_out, source = "Zostera", groups = 1:2)
compare_groups(simmr_5_out, source = "Zostera", groups = 1:3)
compare_groups(simmr_5_out, source = "U.lactuca", groups = c(4:5, 7, 2))
## End(Not run)