sim_studies {simaerep} | R Documentation |
Simulate studies.
Description
Test function, test applicability of poisson test, by
calculating a the bootstrapped probability of obtaining a specific p-value
or lower, use in combination with get_ecd_values()
.
Usage
sim_studies(
df_visit,
df_site,
r = 100,
poisson_test = TRUE,
prob_lower = TRUE,
r_prob_lower = 1000,
under_only = TRUE,
parallel = FALSE,
keep_ae = FALSE,
min_n_pat_with_med75 = 1,
studies = NULL,
.progress = TRUE
)
Arguments
df_visit |
dataframe |
df_site |
dataframe |
r |
integer, denotes number of simulations, Default: 1000 |
poisson_test |
logical, calculates poisson.test pvalue, Default: TRUE |
prob_lower |
logical, calculates probability for getting a lower value, Default: FALSE |
r_prob_lower |
integer, denotes number of simulations for prob_lower value calculation,, Default: 1000 |
under_only |
compute under-reporting probabilities only, default = TRUE |
parallel |
logical, see examples for registering parallel processing framework , Default: FALSE |
keep_ae |
logical, keep ae numbers in output dataframe memory increase roughly 30 percent, Default: F |
min_n_pat_with_med75 |
integer, min number of patients with med75 at site to simulate, Default: 1 |
studies |
vector with study names, Default: NULL |
.progress |
logical, show progress bar |
Details
Here we simulate study replicates maintaining the same number of sites, patients and visit_med75 by bootstrap resampling, then probabilities for obtaining lower or same mean_ae count and p-values using poisson.test are calculated.
adds column with simulated probabilities for equal or lower mean_ae at visit_med75
Value
dataframe
Examples
df_visit1 <- sim_test_data_study(n_pat = 100, n_sites = 5,
frac_site_with_ur = 0.4, ur_rate = 0.6)
df_visit1$study_id <- "A"
df_visit2 <- sim_test_data_study(n_pat = 1000, n_sites = 3,
frac_site_with_ur = 0.2, ur_rate = 0.1)
df_visit2$study_id <- "B"
df_visit <- dplyr::bind_rows(df_visit1, df_visit2)
df_site <- site_aggr(df_visit)
sim_studies(df_visit, df_site, r = 3, keep_ae = TRUE)
## Not run:
# parallel processing -------------------------
library(future)
future::plan(multiprocess)
sim_studies(df_visit, df_site, r = 3, keep_ae = TRUE, parallel = TRUE)
future::plan(sequential)
## End(Not run)