| generate_fake_data {simITS} | R Documentation | 
Make fake data for testing purposes.
Description
Defaults have heavy seasonality, and an extra bump in impact kicks in at 12 months post-policy.
Usage
generate_fake_data(
  t_min = -40,
  t_max = 9,
  t0 = 0,
  rho = 0.5,
  sd.omega = 1,
  coef_line = c(20, 0.05),
  coef_q = c(1, 0, -1, 0),
  coef_temp = 0.1,
  coef_sin = c(0, 0),
  coef_tx = c(0, 0.25, 5)
)
Arguments
t_min | 
 Index of first month  | 
t_max | 
 Index of last month  | 
t0 | 
 Last pre-policy time point  | 
rho | 
 Autocorrelation  | 
sd.omega | 
 Standard deviation of the true residual  | 
coef_line | 
 Intercept and slope of the main trendline (list of 2).  | 
coef_q | 
 Coefficients for the four quarters (list of 4).  | 
coef_temp | 
 Coefficient for temperature.  | 
coef_sin | 
 Coefficents for sin and cos features (list of 2)  | 
coef_tx | 
 Coefficient for treatment post-policy (list of 3, initial offset, initial slope, additional slope past 12 months). Treatment is a piecewise linear function.  | 
Value
A data.frame having month , temperature ,
sin.m , cos.m , Q1, Q2 , Q3, Q4,
post , Ystr0 , Ystr , Y
Examples
fdat = generate_fake_data(-100,100, rho = 0.95, coef_q=c(0,0,0,0), coef_temp = 0)
plot( fdat$month, fdat$Y, type="l" )
fdat2 = generate_fake_data(-100, 100, rho = 0.0, coef_q=c(0,0,0,0), coef_temp = 0)
plot( fdat$month, fdat2$Y, type="l" )
[Package simITS version 0.1.1 Index]