Analysis via Simulation of Interrupted Time Series (ITS) Data


[Up] [Top]

Documentation for package ‘simITS’ version 0.1.1

Help Pages

add_lagged_covariates Augment dataframe with lagged covariates
adjust_data Adjust an outcome time series based on the group weights.
aggregate_data Aggregate grouped data
aggregate_simulation_results Test a passed test statistic on the simulated data
calculate_average_outcome Summary function for summarize.simulation.results
calculate_group_weights Calculate proportion of subgroups across time
extrapolate_model Extrapolate pre-policy data to post-policy era
fit_model_default Default ITS model
generate_fake_data Make fake data for testing purposes.
generate_fake_grouped_data A fake DGP with time varying categorical covariate for illustrating the code.
make_envelope_graph Make envelope style graph with associated smoothed trendlines
make_fit_season_model Make a fit_model that takes a seasonality component
make_many_predictions Generate a collection of raw counterfactual trajectories
make_many_predictions_plug Generate a collection of raw counterfactual trajectories
make_model_smoother Make a smoother that fits a model and then smooths residuals
mecklenberg Mecklenberg PSA Reform Data
meck_subgroup Mecklenberg data by subgroup of charge type
newjersey New Jersey PSA Reform aggregate data
process_outcome_model Generate an ITS extrapolation simulation.
simITS 'simITS' package overview
smooth_residuals Smooth residuals after model fit
smooth_series Smooth a series using a static loess smoother