log_normal_model {simDNAmixtures} | R Documentation |
Defines a log normal model for peak height variability
Description
Defines a log normal model for peak height variability
Usage
log_normal_model(
template,
degradation = rep(0, length(template)),
LSAE = stats::setNames(rep(1, length(model_settings$locus_names)),
model_settings$locus_names),
c2,
k2,
model_settings
)
Arguments
template |
Numeric vector |
degradation |
Numeric vector of same length as template. Degradation parameters for each contributor. |
LSAE |
Numeric vector (named) with Locus Specific Amplification Efficiencies. See sample_LSAE. Defaults to 1 for each locus. |
c2 |
Numeric. Allele variance parameter. |
k2 |
Optionally a numeric vector with stutter variance parameters. See sample_log_normal_stutter_variance. |
model_settings |
List. Possible parameters:
|
Details
Define a log normal model for peak height variability with the parametrisation as described by Bright et al. The model may then be used to sample DNA profiles using the sample_mixture_from_genotypes function. Alternatively, to sample many models and profiles in one go with parameters according to a specified distribution, the sample_mixtures function can be used.
Value
Object of class pg_model
.
References
Bright, J.A. et al. (2016). Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Science International: Genetics, 23, 226-239. doi: 10.1016/j.fsigen.2016.05.007
See Also
Examples
data(gf)
freqs <- read_allele_freqs(system.file("extdata","FBI_extended_Cauc.csv",
package = "simDNAmixtures"))
k2 <- sample_log_normal_stutter_variance(gf$log_normal_settings$stutter_variability)
model <- log_normal_model(template = 1e3, c2 = 15, k2 = k2,
model_settings = gf$log_normal_settings)
model