| resampleScoreModelPair {sigr} | R Documentation | 
Studentized bootstrap test of strength of scoreFn(yValues,model1Values) > scoreFn(yValues,model1Values).
Description
Studentized bootstrap test of strength of scoreFn(yValues,model1Values) > scoreFn(yValues,model1Values) sampled with replacement.
Usage
resampleScoreModelPair(
  model1Values,
  model2Values,
  yValues,
  scoreFn,
  ...,
  na.rm = FALSE,
  returnScores = FALSE,
  nRep = 100,
  parallelCluster = NULL,
  sameSample = FALSE
)
Arguments
| model1Values | numeric array of predictions (model to test). | 
| model2Values | numeric array of predictions (reference model). | 
| yValues | numeric/logical array of outcomes, dependent, or truth values | 
| scoreFn | function with signature scoreFn(modelValues,yValues) returning scalar numeric score. | 
| ... | not used, forces later arguments to be bound by name. | 
| na.rm | logical, if TRUE remove NA values | 
| returnScores | logical if TRUE return detailed resampledScores. | 
| nRep | integer number of repititions to perform. | 
| parallelCluster | optional snow-style parallel cluster. | 
| sameSample | logical if TRUE use the same sample in computing both scores during bootstrap replication (else use independent samples). | 
Details
True confidence intervals are harder to get right (see "An Introduction to the Bootstrap", Bradely Efron, and Robert J. Tibshirani, Chapman & Hall/CRC, 1993.), but we will settle for simple p-value estimates.
Value
summaries
Examples
set.seed(25325)
y <- 1:5
m1 <- c(1,1,2,2,2)
m2 <- c(1,1,1,1,2)
cor(m1,y)
cor(m2,y)
f <- function(modelValues,yValues) {
  if((sd(modelValues)<=0)||(sd(yValues)<=0)) {
    return(0)
  }
  cor(modelValues,yValues)
}
resampleScoreModelPair(m1,m2,y,f)