| find_AUC_q {sigr} | R Documentation | 
Find area matching polynomial curve.
Description
Based on https://win-vector.com/2020/09/13/why-working-with-auc-is-more-powerful-than-one-might-think/
Usage
find_AUC_q(
  modelPredictions,
  yValues,
  ...,
  na.rm = FALSE,
  yTarget = TRUE,
  n_points = 101
)
Arguments
| modelPredictions | numeric predictions (not empty), ordered (either increasing or decreasing) | 
| yValues | truth values (not empty, same length as model predictions) | 
| ... | force later arguments to bind by name. | 
| na.rm | logical, if TRUE remove NA values. | 
| yTarget | value considered to be positive. | 
| n_points | number of points to use in estimates. | 
Value
q that such that curve 1 - (1 - (1-ideal_roc$Specificity)^q)^(1/q) matches area
Examples
d <- data.frame(pred = 1:4, truth = c(TRUE,FALSE,TRUE,TRUE))
q <- find_AUC_q(d$pred, d$truth)
roc <- build_ROC_curve(d$pred, d$truth)
ideal_roc <- data.frame(Specificity = seq(0, 1, length.out = 101))
ideal_roc$Sensitivity <- sensitivity_from_specificity_q(ideal_roc$Specificity, q)
# library(ggplot2)
# ggplot(mapping = aes(x = 1 - Specificity, y = Sensitivity)) +
#   geom_line(data = roc, color = "DarkBlue") +
#   geom_line(data  = ideal_roc, color = "Orange") +
#   theme(aspect.ratio=1) +
#   ggtitle("example actual and ideal curve")
[Package sigr version 1.1.5 Index]