simulate {shiftR} | R Documentation |
Generate Artificial Data for Tests and Illustrations
Description
These functions generate two artificial data sets with local dependence of observations.
Usage
simulateNumeric(n, corWithin, corAcross = 0)
simulateBinary(n, corWithin, corAcross = 0)
Arguments
n |
Total number of elements in each data set. |
corWithin |
Correlation of adjacent observations within each data set. |
corAcross |
Correlation of observations across data sets. |
Value
Returns the Cramer's V coefficient.
Note
The simulateNumeric
function generates two data sets with elements
having standard normal distribution.
The simulateBinary
function generates data sets with 0/1 values
by thresholding the numeric data sets from simulateNumeric
.
The simulatePValues
function generates data sets of p-values
by applying pnorm
to the data sets
from simulateNumeric
.
Author(s)
Andrey A Shabalin andrey.shabalin@gmail.com
Examples
n = 100000
sim = simulateNumeric(n, 0.5, 0.3)
# Means should be close to 0 (zero)
mean(sim$data1)
mean(sim$data2)
# Variances should be close to 1
var(sim$data1)
var(sim$data2)
# Correlation of adjacent observations
# should be close to 0.5
cor(sim$data1[-1], sim$data1[-n])
cor(sim$data2[-1], sim$data2[-n])
# Correlation between data sets
# should be close to 0.3
cor(sim$data1, sim$data2)
[Package shiftR version 1.5 Index]