plotsurv.sglg {sglg} | R Documentation |
Plot simultaneously the Kaplan-Meier and parametric estimators of the survival function.
Description
plotsurv.sglg
is used to plot simultaneously the Kaplan-Meier and parametric estimators of the survival function.
Usage
plotsurv.sglg(fit)
Arguments
fit |
an object of the class sglg. This object is returned from the call to survglg() or ssurvglg(). |
Author(s)
Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>
References
Carlos A. Cardozo, G. Paula and L. Vanegas. Semi-parametric accelerated failure time models with generalized log-gamma erros. In preparation.
Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.
Examples
require(survival)
rows <- 240
columns <- 2
t_beta <- c(0.5, 2)
t_sigma <- 1
t_lambda <- 1
set.seed(8142031)
x1 <- rbinom(rows, 1, 0.5)
x2 <- runif(columns, 0, 1)
X <- cbind(x1,x2)
s <- t_sigma^2
a <- 1/s
t_ini1 <- exp(X %*% t_beta) * rgamma(rows, scale = s, shape = a)
cens.time <- rweibull(rows, 0.6, 14)
delta1 <- ifelse(t_ini1 > cens.time, 1, 0)
obst1 <- t_ini1
for (i in 1:rows) {
if (delta1[i] == 1) {
obst1[i] <- cens.time[i]
}
}
data.example <- data.frame(obst1,delta1,X)
fit3 <- survglg(Surv(log(obst1),delta1) ~ x1 + x2 - 1, data=data.example,shape=0.9)
plotsurv.sglg(fit3)
[Package sglg version 0.2.2 Index]