order_glg {sglg} | R Documentation |
Random Sampling of K-th Order Statistics from a Generalized Log-gamma Distribution
Description
order_glg
is used to obtain a random sample of the K-th order statistics from a generalized log-gamma distribution.
Usage
order_glg(size, mu, sigma, lambda, k, n, alpha = 0.05)
Arguments
size |
numeric, represents the size of the sample. |
mu |
numeric, represents the location parameter. Default value is 0. |
sigma |
numeric, represents the scale parameter. Default value is 1. |
lambda |
numeric, represents the shape parameter. Default value is 1. |
k |
numeric, represents the K-th smallest value from a sample. |
n |
numeric, represents the size of the sample to compute the order statistic from. |
alpha |
numeric, (1 - alpha) represents the confidence of an interval for the population median of the distribution of the k-th order statistic. Default value is 0.05. |
Value
A list with a random sample of order statistics from a generalized log-gamma distribution, the value of its join probability density function evaluated in the random sample and a (1 - alpha) confidence interval for the population median of the distribution of the k-th order statistic.
Author(s)
Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.
References
Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.
Naradajah, S. and Rocha, R. (2016) Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software.
Examples
# A random sample of size 10 of order statistics from a Extreme Value Distribution.
order_glg(10,0,1,1,1,50)
## Not run: # A small comparison between two random sampling methods of order statistics
# Method 1
m <- 10
output <- rep(0,m)
order_sample <- function(m,n,k){
for(i in 1:m){
sample <- rglg(n)
order_sample <- sort(sample)
output[i] <- order_sample[k]
}
return(output)
}
N <- 10000
n <- 200
k <- 100
system.time(order_sample(N,n,k))
sample_1 <- order_sample(N,n,k)
hist(sample_1)
summary(sample_1)
# Method 2
system.time(order_glg(N,0,1,1,k,n))
sample_2 <- order_glg(N,0,1,1,k,n)$sample
hist(sample_2)
summary(sample_2)
## End(Not run)