gnfit {sglg} | R Documentation |
gnfit
Description
This function provides some useful statistics to assess the quality of fit of generalized log-gamma probabilistic model, including the statistics Cramer-von Mises and Anderson-Darling. It can also calculate other goodness of fit such as Hannan-Quin Information Criterion and Kolmogorov-Smirnov test.
Usage
gnfit(starts, data)
Arguments
starts |
numeric vector. Initial parameters to maximize the likelihood function |
data |
numeric vector. A sample of a generalized log-gamma distribution. |
Author(s)
Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>
References
Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.
Examples
## Not run:
set.seed(1)
# The size of the sample must be median or large to obtain a good estimates
n <- 100
sample <- rglg(n,location=0,scale=0.5,shape=0.75)
# This step takes a few minutes.
result <- gnfit(starts=c(0.1,0.75,1),data=sample)
result
## End(Not run)
[Package sglg version 0.2.2 Index]