st_kernel_weights {sfdep} | R Documentation |
Calculate Kernel Weights
Description
Create a weights list using a kernel function.
Usage
st_kernel_weights(
nb,
geometry,
kernel = "uniform",
threshold = critical_threshold(geometry),
adaptive = FALSE,
self_kernel = FALSE
)
Arguments
nb |
an object of class |
geometry |
the geometry an sf object. |
kernel |
One of "uniform", "gaussian", "triangular", "epanechnikov", or "quartic". See kernels for more. |
threshold |
a scaling threshold to be used in calculating |
adaptive |
default |
self_kernel |
default |
Details
By default st_kernel_weight()
utilizes a critical threshold of the maximum neighbor distance using critical_threshold()
. If desired, the critical threshold can be specified manually. The threshold
will be passed to the underlying kernel.
Value
a list where each element is a numeric vector.
See Also
Other weights:
st_inverse_distance()
,
st_nb_dists()
,
st_weights()
Examples
geometry <- sf::st_geometry(guerry)
nb <- st_contiguity(geometry)
nb <- include_self(nb)
res <- st_kernel_weights(nb, geometry)
head(res, 3)