getVoigtParam {serrsBayes} | R Documentation |
Compute the pseudo-Voigt mixing ratio for each peak.
Description
Calculates the mixing parameter \eta_j
from the scales of the Gaussian/Lorentzian
components.
Usage
getVoigtParam(scale_G, scale_L)
Arguments
scale_G |
Vector of standard deviations |
scale_L |
Vector of scale parameters |
Details
First, calculate a polynomial average of the scale parameters according to the approximation of Thompson et al. (1987):
f_{G,L} = (\sigma_j^5 + 2.69\sigma_j^4\phi_j + 2.42\sigma_j^3\phi_j^2 + 4.47\sigma_j^2\phi_j^3 + 0.07\sigma_j\phi_j^4 + \phi_j^5)^{1/5}
Then the Voigt mixing parameter \eta_j
is defined as:
\eta_j = 1.36\frac{\phi_j}{f_{G,L}} - 0.47(\frac{\phi_j}{f_{G,L}})^2 + 0.11(\frac{\phi_j}{f_{G,L}})^3
Value
The Voigt mixing weights for each peak, between 0 (Gaussian) and 1 (Lorentzian).
References
Thompson, Cox & Hastings (1987) "Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al_2 O_3
,"
J. Appl. Crystallogr. 20(2): 79–83, doi: 10.1107/S0021889887087090