VEpowerPP {seqDesign} | R Documentation |
Unconditional Power to Detect Positive Treatment Efficacy in a Per-Protocol Cohort
Description
VEpowerPP
computes unconditional power to detect positive treatment (vaccine) efficacy in per-protocol cohorts identified in simTrial
-generated data-sets.
Usage
VEpowerPP(dataList, lowerVEuncPower, alphaUncPower, VEcutoffWeek, stage1,
outName = NULL, saveDir = NULL, verbose = TRUE)
Arguments
dataList |
if |
lowerVEuncPower |
a numeric value specifying a one-sided null hypothesis H0: VE( |
alphaUncPower |
one minus the nominal confidence level of the two-sided confidence interval used to test the one-sided null hypothesis H0: VE( |
VEcutoffWeek |
a cut-off time (in weeks). Only subjects with the follow-up time exceeding |
stage1 |
the final week of stage 1 in a two-stage trial |
outName |
a character string specifying the output |
saveDir |
a character string specifying a path for the output directory. If supplied, the output is saved as an |
verbose |
a logical value indicating whether information on the output directory and file name should be printed out (default is |
Details
All time variables use week as the unit of time. Month is defined as 52/12 weeks.
A per-protocol cohort indicator is assumed to be included in the simTrial
-generated data-sets, which is ensured by specifying the missVaccProb
argument in simTrial
.
VE(VEcutoffWeek
–stage1
) is estimated as one minus the ratio of Nelson-Aalen-based cumulative incidence functions. VEpowerPP
computes power to reject the null hypothesis H0: VE(VEcutoffWeek
–stage1
) \le
lowerVEuncPower
x 100%. H0 is rejected if the lower bound of the two-sided (1-alphaUncPower
) x 100% confidence interval for VE(VEcutoffWeek
–stage1
) lies above lowerVEuncPower
.
Value
If saveDir
is specified, the output list (named pwList
) is saved as an .RData
file named outName
(or VEpwPP.RData
if left unspecified); otherwise the output list is returned. The output object is a list (of equal length as dataList
) of lists with the following components:
-
VE
: a numeric vector of VE(VEcutoffWeek
–stage1
) estimates for each missing vaccination probability inmissVaccProb
ofsimTrial
-
VEpwPP
: a numeric vector of powers to reject the null hypothesis H0: VE(VEcutoffWeek
–stage1
)\le
lowerVEuncPower
x 100% for each missing vaccination probability inmissVaccProb
ofsimTrial
See Also
Examples
simData <- simTrial(N=rep(1000, 2), aveVE=c(0, 0.4), VEmodel="half",
vePeriods=c(1, 27, 79), enrollPeriod=78,
enrollPartial=13, enrollPartialRelRate=0.5, dropoutRate=0.05,
infecRate=0.04, fuTime=156,
visitSchedule=c(0, (13/3)*(1:4), seq(13*6/3, 156, by=13*2/3)),
missVaccProb=c(0,0.05,0.1,0.15), VEcutoffWeek=26, nTrials=5,
stage1=78, randomSeed=300)
monitorData <- monitorTrial(dataFile=simData, stage1=78, stage2=156,
harmMonitorRange=c(10,100), alphaPerTest=NULL,
nonEffStartMethod="FKG", nonEffInterval=20,
lowerVEnoneff=0, upperVEnoneff=0.4,
highVE=0.7, stage1VE=0, lowerVEuncPower=0,
alphaNoneff=0.05, alphaHigh=0.05, alphaStage1=0.05,
alphaUncPower=0.05, estimand="cuminc", lagTime=26)
censData <- censTrial(dataFile=simData, monitorFile=monitorData, stage1=78, stage2=156)
VEpwPP <- VEpowerPP(dataList=list(censData), lowerVEuncPower=0, alphaUncPower=0.05,
VEcutoffWeek=26, stage1=78)
### alternatively, to save the .RData output file (no '<-' needed):
###
### simTrial(N=rep(1000, 2), aveVE=c(0, 0.4), VEmodel="half",
### vePeriods=c(1, 27, 79), enrollPeriod=78, enrollPartial=13,
### enrollPartialRelRate=0.5, dropoutRate=0.05, infecRate=0.04, fuTime=156,
### visitSchedule=c(0, (13/3)*(1:4), seq(13*6/3, 156, by=13*2/3)),
### missVaccProb=c(0,0.05,0.1,0.15), VEcutoffWeek=26, nTrials=5,
### stage1=78, saveDir="./", randomSeed=300)
###
### monitorTrial(dataFile=
### "simTrial_nPlac=1000_nVacc=1000_aveVE=0.4_infRate=0.04.RData",
### stage1=78, stage2=156, harmMonitorRange=c(10,100), alphaPerTest=NULL,
### nonEffStartMethod="FKG", nonEffInterval=20,
### lowerVEnoneff=0, upperVEnoneff=0.4, highVE=0.7, stage1VE=0,
### lowerVEuncPower=0, alphaNoneff=0.05, alphaHigh=0.05, alphaStage1=0.05,
### alphaUncPower=0.05, estimand="cuminc", lagTime=26, saveDir="./")
###
### censTrial(dataFile=
### "simTrial_nPlac=1000_nVacc=1000_aveVE=0.4_infRate=0.04.RData",
### monitorFile=
### "monitorTrial_nPlac=1000_nVacc=1000_aveVE=0.4_infRate=0.04_cuminc.RData",
### stage1=78, stage2=156, saveDir="./")
###
### VEpowerPP(dataList=
### list("trialDataCens_nPlac=1000_nVacc=1000_aveVE=0.4_infRate=0.04_cuminc.RData"),
### lowerVEuncPower=0, alphaUncPower=0.05, VEcutoffWeek=26, stage1=78, saveDir="./")