as.LDA {sentopics} | R Documentation |
Conversions from other packages to LDA
Description
These functions converts estimated models from other topic modeling packages to the format used by sentopics.
Usage
as.LDA(x, ...)
## S3 method for class 'STM'
as.LDA(x, docs, ...)
## S3 method for class 'LDA_Gibbs'
as.LDA(x, docs, ...)
## S3 method for class 'LDA_VEM'
as.LDA(x, docs, ...)
## S3 method for class 'textmodel_lda'
as.LDA(x, ...)
as.LDA_lda(list, docs, alpha, eta)
## S3 method for class 'keyATM_output'
as.LDA(x, docs, ...)
Arguments
x |
an estimated topic model from stm, topicmodels or seededlda. |
... |
arguments passed to other methods. |
docs |
for some objects, the documents used to initialize the model. |
list |
the list containing an estimated model from lda. |
alpha |
for lda models, the document-topic mixture hyperparameter.
If missing, the hyperparameter will be set to |
eta |
for lda models, the topic-word mixture hyperparameter. Other
packages refer to this hyperparameter as beta. If missing, the
hyperparameter will be set to |
Details
Some models do not store the topic assignment of each word (for
example, estimated through variational inference). For these, the
conversion is limited and some functionalities of sentopics will be
disabled. The list of affected functions is subject to change and currently
includes fit()
, mergeTopics()
and rJST.LDA()
.
Since models from the lda package are simply lists of outputs, the
function as.LDA_lda()
is not related to the other methods and should be
applied directly on lists containing a model.
Value
A S3 list of class LDA
, as if it was created and estimated using
LDA()
and fit()
.
Examples
## stm
library("stm")
stm <- stm(poliblog5k.docs, poliblog5k.voc, K=25,
prevalence=~rating, data=poliblog5k.meta,
max.em.its=2, init.type="Spectral")
as.LDA(stm, docs = poliblog5k.docs)
## lda
library("lda")
data("cora.documents")
data("cora.vocab")
lda <- lda.collapsed.gibbs.sampler(cora.documents,
5, ## Num clusters
cora.vocab,
100, ## Num iterations
0.1,
0.1)
LDA <- as.LDA_lda(lda, docs = cora.documents, alpha = .1, eta = .1)
## topicmodels
data("AssociatedPress", package = "topicmodels")
lda <- topicmodels::LDA(AssociatedPress[1:20,],
control = list(alpha = 0.1), k = 2)
LDA <- as.LDA(lda, docs = AssociatedPress[1:20,])
## seededlda
library("seededlda")
lda <- textmodel_lda(dfm(ECB_press_conferences_tokens),
k = 6, max_iter = 100)
LDA <- as.LDA(lda)
## keyATM
library("keyATM")
data(keyATM_data_bills, package = "keyATM")
keyATM_docs <- keyATM_read(keyATM_data_bills$doc_dfm)
out <- keyATM(docs = keyATM_docs, model = "base",
no_keyword_topics = 5,
keywords = keyATM_data_bills$keywords)
LDA <- as.LDA(out, docs = keyATM_docs)