subset.sento_measures {sentometrics} | R Documentation |
Subset sentiment measures
Description
Subsets rows of the sentiment measures based on its columns.
Usage
## S3 method for class 'sento_measures'
subset(x, subset = NULL, select = NULL, delete = NULL, ...)
Arguments
x |
a |
subset |
a logical (non- |
select |
a |
delete |
see the |
... |
not used. |
Value
A modified sento_measures
object, with only the remaining rows and sentiment measures,
including updated information and statistics, but the original sentiment scores data.table
untouched.
Author(s)
Samuel Borms
Examples
data("usnews", package = "sentometrics")
data("list_lexicons", package = "sentometrics")
data("list_valence_shifters", package = "sentometrics")
# construct a sento_measures object to start with
corpus <- sento_corpus(corpusdf = usnews)
corpusSample <- quanteda::corpus_sample(corpus, size = 500)
l <- sento_lexicons(list_lexicons[c("LM_en", "HENRY_en")])
ctr <- ctr_agg(howTime = c("equal_weight", "linear"), by = "year", lag = 3)
sm <- sento_measures(corpusSample, l, ctr)
# three specified indices in required list format
three <- as.list(
stringi::stri_split(c("LM_en--economy--linear",
"HENRY_en--wsj--equal_weight",
"HENRY_en--wapo--equal_weight"),
regex = "--")
)
# different subsets
sub1 <- subset(sm, HENRY_en--economy--equal_weight >= 0.01)
sub2 <- subset(sm, date %in% get_dates(sm)[3:12])
sub3 <- subset(sm, 3:12)
sub4 <- subset(sm, 1:100) # warning
# different selections
sel1 <- subset(sm, select = "equal_weight")
sel2 <- subset(sm, select = c("equal_weight", "linear"))
sel3 <- subset(sm, select = c("linear", "LM_en"))
sel4 <- subset(sm, select = list(c("linear", "wsj"), c("linear", "economy")))
sel5 <- subset(sm, select = three)
# different deletions
del1 <- subset(sm, delete = "equal_weight")
del2 <- subset(sm, delete = c("linear", "LM_en"))
del3 <- subset(sm, delete = list(c("linear", "wsj"), c("linear", "economy")))
del4 <- subset(sm, delete = c("equal_weight", "linear")) # warning
del5 <- subset(sm, delete = three)