peakdocs {sentometrics} | R Documentation |
Extract documents related to sentiment peaks
Description
This function extracts the documents with most extreme sentiment (lowest, highest or both in absolute terms). The extracted documents are unique, even when, for example, all most extreme sentiment values (across sentiment calculation methods) occur only for one document.
Usage
peakdocs(sentiment, n = 10, type = "both", do.average = FALSE)
Arguments
sentiment |
a |
n |
a positive |
type |
a |
do.average |
a |
Value
A vector of type "character"
corresponding to the n
extracted document identifiers.
Author(s)
Samuel Borms
Examples
set.seed(505)
data("usnews", package = "sentometrics")
data("list_lexicons", package = "sentometrics")
data("list_valence_shifters", package = "sentometrics")
l <- sento_lexicons(list_lexicons[c("LM_en", "HENRY_en")])
corpus <- sento_corpus(corpusdf = usnews)
corpusSample <- quanteda::corpus_sample(corpus, size = 200)
sent <- compute_sentiment(corpusSample, l, how = "proportionalPol")
# extract the peaks
peaksAbs <- peakdocs(sent, n = 5)
peaksAbsQuantile <- peakdocs(sent, n = 0.50)
peaksPos <- peakdocs(sent, n = 5, type = "pos")
peaksNeg <- peakdocs(sent, n = 5, type = "neg")