grr {sensmediation} | R Documentation |
Analytic gradients of the loglikelihood functions for ML estimation of regression parameters
Description
Implementation of the analytic gradients of the loglikelihood functions for ML estimation of regression parameters for different combinations of
exposure, mediator and outcome models. The functions are named according to the convention grr."model.expl type""model.resp type"
where b
stands for binary probit regression and c
stands for linear regression.
Usage
grr.bb(par, Rho, X.expl = X.expl, X.resp = X.resp,
outc.resp = outc.resp, outc.expl = outc.expl)
grr.bc(par, Rho, X.expl = X.expl, X.resp = X.resp,
outc.resp = outc.resp, outc.expl = outc.expl)
grr.cb(par, Rho, X.expl = X.expl, X.resp = X.resp,
outc.resp = outc.resp, outc.expl = outc.expl)
grr.cc(par, Rho, X.expl = X.expl, X.resp = X.resp,
outc.resp = outc.resp, outc.expl = outc.expl)
Arguments
par |
Vector of parameter values. |
Rho |
The value of the sensitivity parameter. |
X.expl |
The model matrix (see |
X.resp |
The model matrix (see |
outc.resp |
The outcome of |
outc.expl |
The outcome of |
See Also
[Package sensmediation version 0.3.0 Index]