ML {sensmediation} | R Documentation |
Functions for ML estimation of regression parameters for sensitivity analysis
Description
Functions for ML estimation of regression parameters for sensitivity analysis for different combinations of exposure, mediator and outcome models. The functions are named according to the convention ML."model.expl type""model.resp type"
where b
stands for binary probit regression and c
stands for linear regression. The optimization is performed using
maxLik
. The functions are intended to be called through coefs.sensmed
, not on their own.
Usage
ML.bb(model.expl, model.resp, Rho, progress = TRUE, ...)
ML.bc(model.expl, model.resp, Rho, progress = TRUE, ...)
ML.cb(model.expl, model.resp, Rho, progress = TRUE, ...)
ML.cc(model.expl, model.resp, Rho, progress = TRUE, ...)
Arguments
model.expl |
Fitted |
model.resp |
Fitted |
Rho |
The sensitivity parameter vector. If |
progress |
Logical, indicating whether or not the progress (i.e. the |
... |
Additional arguments to be passed on to the |
Value
A list with elements:
coef |
A matrix with the estimated regression parameters for |
Rho |
The sensitivity parameter vector. |
expl.coef |
A matrix with the estimated regression parameters for |
model.expl |
the original fitted |
model.resp |
the original fitted |
X.expl |
The model matrix (see |
X.resp |
The model matrix (see |
outc.resp |
The outcome variable of |
outc.expl |
The outcome variable of |
sigma.res.expl |
If |
sigma.res.resp |
If |
value |
The values of the -loglikelihood function for the best set of regression parameters from the optimization for each |
sigmas |
A list with the covariance matrices for the model parameters in |
max.info |
Information about the maximization (whether or not the convergence was successful, |
Author(s)
Anita Lindmark