secsse_ml {secsse} | R Documentation |
Maximum likehood estimation for (SecSSE)
Description
Maximum likehood estimation under Several examined and concealed States-dependent Speciation and Extinction (SecSSE)
Usage
secsse_ml(
phy,
traits,
num_concealed_states,
idparslist,
idparsopt,
initparsopt,
idparsfix,
parsfix,
cond = "proper_cond",
root_state_weight = "proper_weights",
sampling_fraction,
tol = c(1e-04, 1e-05, 1e-07),
maxiter = 1000 * round((1.25)^length(idparsopt)),
optimmethod = "subplex",
num_cycles = 1,
loglik_penalty = 0,
is_complete_tree = FALSE,
verbose = (optimmethod == "simplex"),
num_threads = 1,
atol = 1e-08,
rtol = 1e-07,
method = "odeint::bulirsch_stoer"
)
Arguments
phy |
phylogenetic tree of class |
traits |
vector with trait states for each tip in the phylogeny. The
order of the states must be the same as the tree tips. For help, see
|
num_concealed_states |
number of concealed states, generally equivalent to the number of examined states in the dataset. |
idparslist |
overview of parameters and their values. |
idparsopt |
a numeric vector with the ID of parameters to be estimated. |
initparsopt |
a numeric vector with the initial guess of the parameters to be estimated. |
idparsfix |
a numeric vector with the ID of the fixed parameters. |
parsfix |
a numeric vector with the value of the fixed parameters. |
cond |
condition on the existence of a node root: |
root_state_weight |
the method to weigh the states:
|
sampling_fraction |
vector that states the sampling proportion per trait state. It must have as many elements as there are trait states. |
tol |
A numeric vector with the maximum tolerance of the optimization
algorithm. Default is |
maxiter |
max number of iterations. Default is
|
optimmethod |
A string with method used for optimization. Default is
|
num_cycles |
Number of cycles of the optimization. When set to |
loglik_penalty |
the size of the penalty for all parameters; default is 0 (no penalty). |
is_complete_tree |
logical specifying whether or not a tree with all its
extinct species is provided. If set to |
verbose |
sets verbose output; default is |
num_threads |
number of threads to be used. Default is one thread. |
atol |
A numeric specifying the absolute tolerance of integration. |
rtol |
A numeric specifying the relative tolerance of integration. |
method |
integration method used, available are:
|
Value
Parameter estimated and maximum likelihood
Examples
# Example of how to set the arguments for a ML search.
library(secsse)
library(DDD)
set.seed(13)
# lambdas for 0A and 1A and 2A are the same but need to be estimated
# mus are fixed to
# the transition rates are constrained to be equal and fixed 0.01
phylotree <- ape::rcoal(31, tip.label = 1:31)
traits <- sample(c(0,1,2), ape::Ntip(phylotree),replace=TRUE)#get some traits
num_concealed_states<-3
idparslist <- id_paramPos(traits, num_concealed_states)
idparslist[[1]][c(1,4,7)] <- 1
idparslist[[1]][c(2,5,8)] <- 2
idparslist[[1]][c(3,6,9)] <- 3
idparslist[[2]][]<-4
masterBlock <- matrix(5,ncol = 3,nrow = 3,byrow = TRUE)
diag(masterBlock) <- NA
diff.conceal <- FALSE
idparslist[[3]] <- q_doubletrans(traits,masterBlock,diff.conceal)
startingpoint <- DDD::bd_ML(brts = ape::branching.times(phylotree))
intGuessLamba <- startingpoint$lambda0
intGuessMu <- startingpoint$mu0
idparsopt <- c(1,2,3,5)
initparsopt <- c(rep(intGuessLamba,3),rep((intGuessLamba/5),1))
idparsfix <- c(0,4)
parsfix <- c(0,0)
tol <- c(1e-02, 1e-03, 1e-04)
maxiter <- 1000 * round((1.25)^length(idparsopt))
optimmethod <- 'subplex'
cond <- 'proper_cond'
root_state_weight <- 'proper_weights'
sampling_fraction <- c(1,1,1)
model<-secsse_ml(
phylotree,
traits,
num_concealed_states,
idparslist,
idparsopt,
initparsopt,
idparsfix,
parsfix,
cond,
root_state_weight,
sampling_fraction,
tol,
maxiter,
optimmethod,
num_cycles = 1,
verbose = FALSE)
# model$ML
# [1] -16.04127