estimateSummary {secrdesign}R Documentation

Direct summary of estimate tables

Description

An alternative approach to summarising output from run.scenarios (cf summary.estimatetables). estimateSummary is especially useful when extractfn = predict or extractfn = coef, and all scenarios have group structure.

Usage


estimateArray(object)

estimateSummary(object, parameter = "D", statistics = c("true", "nvalid", 
    "EST", "seEST", "RB", "seRB", "RSE", "RMSE", "rRMSE", "COV"), true,
    validrange = c(0, Inf), checkfields = c('estimate','SE.estimate'),
    format = c('data.frame', 'list'), cols = NULL)

Arguments

object

secrdesign object of class "estimatetables"

parameter

character name of parameter (row in estimate table)

statistics

character choice of outputs

true

numeric vector of true values, one per scenario and group

validrange

numeric allowed for estimates or other checkfields

checkfields

character choice of columns in each estimate table that will be checked against validrange

format

character choice of output

cols

indices of scenario columns to include when format = "data.frame"

Details

When 'predict(fittedmodel)' in run.scenarios generates more than one estimate table (i.e. when the model uses groups, mixture classes or multiple sessions), the default extract function retains only the first. This is often OK, but it can be frustrating if you care about group- or session-specific estimates.

The alternative is to use 'predict' as the run.scenarios extractfn, which retains all estimate tables. This requires a different function for summarisation; estimateSummary will suffice for many purposes.

estimateSummary internally calls estimateArray to pre-process the output from run.scenarios.

The code should be examined for the precise definition of each statistic.

True parameter values are required for RB, RMSE and COV, and these are computed even if later dropped from the output. If provided, the argument true should have length equal to the number of parameter tables in each replicate, i.e. (number of scenarios) * (number of groups), ordered by scenario. Otherwise, true values will be taken from rows of the data frame object$scenarios.

Replicates are rejected (set to NA) if any checkfields falls outside validrange.

Output statistics ‘EST’, ‘RB’, and ‘RSE’ are means across replicates, and ‘seEST’, ‘seRB’ the corresponding standard errors.

The output list may optionally be formatted as a data.frame with pre-pended columns from object$scenarios. Set cols to 0 or NULL for no scenario columns.

cols defaults to c("scenario", "group") if groups are present and "scenario" otherwise.

Value

estimateArray – array with dimensions (Parameter, statistic, Group, Scenario, Replicate)

estimateSummary

If groups present and format = "list" - a list of matrices (group x scenario), one for each statistic:

true.X

true value of parameter (X)

nvalid

number of valid replicates used in later summaries

EST

mean of parameter estimates

seEST

standard error of estimates (across replicates)

RB

relative bias

seRB

standard error of replicate-specific RB (across replicates)

RSE

relative standard error (SE.estimate/estimate)

RMSE

root mean squared error

rRMSE

RMSE/true.X

COV

coverage of confidence intervals (usually 95% intervals).

If groups absent and format = "list" - a list of vectors (one element per scenario) with statistics as above.

If format = "data.frame" - a data frame with rows corresponding to group x scenario (or session x scenario) combinations and columns corresponding to statistics as above.

Note

These functions were introduced in version 2.8.1. They may change in later versions. The default format was changed to ‘data.frame’ in 2.8.3.

Results may be confusing when scenarios have group structure and groups are not used in the fitted model.

It is assumed that all scenarios (and all models in a multi-model fit) report the same parameters.

See Also

run.scenarios, header, summary.estimatetables

Examples




# 2-scenario, 2-group simulation
scen8 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30, 
    noccasions = c(4,8), groups = c('F','M'))
    
# replace density and sigma values of males to make it interesting 
male <- scen8$group == 'M'
scen8$D[male] <- 4
scen8$sigma[male] <- 40

grid <- make.grid(8, 8, spacing = 30)
mask <- make.mask(grid, buffer = 160, type = 'trapbuffer')

old <- options(digits = 3)
setNumThreads(2)

#--------------------------------------------------------------------------
# run a few simulations

# model groups
sims <- run.scenarios(10, scen8, trapset = grid, fit = TRUE, 
    fit.args = list(model = list(D~g, g0~1, sigma~g), groups = 'group'),
    extractfn = predict, maskset = mask)

# format as list, selecting statistics
# default summary uses true = c(8,4,8,4)  
estimateSummary(sims, 'D', c("true", "nvalid", "EST", "RB", "seRB"))

# format as data.frame by scenario and group, all statistics
estimateSummary(sims, 'D',  format = 'data.frame')

#--------------------------------------------------------------------------
# try with default extractfn (single table per replicate, despite groups)
sims2 <- run.scenarios(10, scen8, trapset = grid, fit = TRUE, 
     maskset = mask)

# Fails with "Error in estimateSummary(sims2, "D") : incongruent 'true'""
# estimateSummary(sims2, 'D')

# OK if manually provide scenario-specific true density
estimateSummary(sims2, 'D', true = c(12,12))

# reformat by scenario
estimateSummary(sims2, 'D', true = c(12,12), format = 'data.frame')

# compare standard summary
summary(sims2)$OUTPUT

#--------------------------------------------------------------------------

# multiple estimate tables also arise from multi-session simulations
# argument 'true' must be specified manually
# interpret with care: sessions are (probably) not independent
# this example uses the previous grid and mask

scen9 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30, noccasions = 5)
poparg <- list(nsessions = 3, details = list(lambda = 1.2))  # for sim.popn
detarg <- list(renumber = FALSE)                             # for sim.capthist
fitarg <- list(model = D~Session)                            # for secr.fit

sims3 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE, 
    maskset = mask, pop.args = poparg, det.args = detarg,
    fit.args = fitarg, extractfn = predict)
    
estimateSummary(sims3, parameter = 'D', format = 'data.frame', 
    true = 8 * 1.2^(0:2))
#--------------------------------------------------------------------------

# extractfn = coef results in a single estimate table per replicate,
# so the usual summary method is sufficent. For completeness we show 
# that estimateSummary can also be used. Coefficients are often negative,
# so relative values (e.g., RB, RSE) may be meaningless.

sims4 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE, 
    maskset = mask, pop.args = poparg, det.args = detarg,
    fit.args = fitarg, extractfn = coef)
    
estimateSummary(sims4, parameter = 'D', c("nvalid", "EST", "seEST", "RMSE", "COV"), 
    format = 'data.frame', true = log(8), checkfields = 'beta', 
    validrange = log(c(2,20)))

estimateSummary(sims4, parameter = 'D.Session', c("nvalid", "EST", "seEST", 
    "RMSE", "COV"), format = "data.frame", true = log(1.2), checkfields = "beta", 
    validrange = log(c(0.5,2)))
#--------------------------------------------------------------------------

options(old)




[Package secrdesign version 2.9.1 Index]