| get_index {sdmTMB} | R Documentation | 
Extract a relative biomass/abundance index or a center of gravity
Description
Extract a relative biomass/abundance index or a center of gravity
Usage
get_index(
  obj,
  bias_correct = FALSE,
  level = 0.95,
  area = 1,
  silent = TRUE,
  ...
)
get_cog(
  obj,
  bias_correct = FALSE,
  level = 0.95,
  format = c("long", "wide"),
  area = 1,
  silent = TRUE,
  ...
)
Arguments
| obj | Output from  | 
| bias_correct | Should bias correction be implemented  | 
| level | The confidence level. | 
| area | Grid cell area. A vector of length  | 
| silent | Silent? | 
| ... | Passed to  | 
| format | Long or wide. | 
Value
For get_index():
A data frame with a columns for time, estimate, lower and upper
confidence intervals, log estimate, and standard error of the log estimate.
For get_cog():
A data frame with a columns for time, estimate (center of gravity in x and y
coordinates), lower and upper confidence intervals, and standard error of
center of gravity coordinates.
References
Geostatistical random-field model-based indices of abundance (along with many newer papers):
Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic Sciences 71(11): 1655–1666. doi:10.1139/cjfas-2013-0508
Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72(5): 1297–1310. doi:10.1093/icesjms/fsu243
Geostatistical model-based centre of gravity:
Thorson, J.T., Pinsky, M.L., and Ward, E.J. 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol Evol 7(8): 990–1002. doi:10.1111/2041-210X.12567
Bias correction:
Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fisheries Research 175: 66–74. doi:10.1016/j.fishres.2015.11.016
See Also
Examples
# Use a small number of knots for this example to make it fast:
pcod_spde <- make_mesh(pcod, c("X", "Y"), n_knots = 60, type = "kmeans")
m <- sdmTMB(
 data = pcod,
 formula = density ~ 0 + as.factor(year),
 time = "year", mesh = pcod_spde, family = tweedie(link = "log")
)
# make prediction grid:
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))
# Note `return_tmb_object = TRUE` and the prediction grid:
predictions <- predict(m, newdata = nd, return_tmb_object = TRUE)
ind <- get_index(predictions)
if (require("ggplot2", quietly = TRUE)) {
ggplot(ind, aes(year, est)) + geom_line() +
  geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4)
}
cog <- get_cog(predictions)
cog