sigmaDiff {sdetorus} | R Documentation |
High-frequency estimate of the diffusion matrix
Description
Estimation of the \Sigma
in the multivariate diffusion
dX_t=b(X_t)dt+\Sigma dW_t
by the high-frequency estimate
\hat\Sigma = \frac{1}{N\Delta}\sum_{i=1}^N(X_i-X_{i-1})(X_i-X_{i-1})^T
Usage
sigmaDiff(data, delta, circular = TRUE, diagonal = FALSE,
isotropic = FALSE)
Arguments
data |
vector or matrix of size |
delta |
discretization step. |
circular |
whether the process is circular or not. |
diagonal , isotropic |
enforce different constraints for the diffusion matrix. |
Details
See Section 3.1 in García-Portugués et al. (2019) for details.
Value
The estimated diffusion matrix of size c(p, p)
.
References
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. doi:10.1007/s11222-017-9790-2
Examples
# 1D
x <- drop(euler1D(x0 = 0, alpha = 1, mu = 0, sigma = 1, N = 1000,
delta = 0.01))
sigmaDiff(x, delta = 0.01)
# 2D
x <- t(euler2D(x0 = rbind(c(pi, pi)), A = rbind(c(2, 1), c(1, 2)),
mu = c(pi, pi), sigma = c(1, 1), N = 1000,
delta = 0.01)[1, , ])
sigmaDiff(x, delta = 0.01)
sigmaDiff(x, delta = 0.01, circular = FALSE)
sigmaDiff(x, delta = 0.01, diagonal = TRUE)
sigmaDiff(x, delta = 0.01, isotropic = TRUE)
[Package sdetorus version 0.1.10 Index]