rTrajOu {sdetorus} | R Documentation |
Simulation of trajectories for the univariate OU diffusion
Description
Simulation of trajectories of the univariate Ornstein–Uhlenbeck (OU) diffusion
dX_t=\alpha(\mu - X_t)dt+\sigma dW_t, X_0=x_0
using the exact transition probability density.
Usage
rTrajOu(x0, alpha, mu, sigma, N = 100, delta = 0.001)
Arguments
x0 |
initial point. |
alpha |
strength of the drift. |
mu |
unconditional mean of the diffusion. |
sigma |
diffusion coefficient. |
N |
number of discretization steps in the resulting trajectory. |
delta |
time discretization step. |
Details
The law of the discretized trajectory is a multivariate normal
with mean meantOu
and covariance matrix covstOu
.
See rTrajMou
for the multivariate case (less efficient for
dimension one).
Value
A vector of length N + 1
containing x0
in the first
entry and the exact discretized trajectory on the remaining elements.
Examples
isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
manipulate::manipulate({
set.seed(345678);
plot(seq(0, N * delta, by = delta), rTrajOu(x0 = 0, alpha = alpha, mu = 0,
sigma = sigma, N = N, delta = delta), ylim = c(-4, 4), type = "l",
ylab = expression(X[t]), xlab = "t")
}, delta = manipulate::slider(0.01, 5.01, step = 0.1),
N = manipulate::slider(10, 500, step = 10, initial = 200),
alpha = manipulate::slider(0.01, 5, step = 0.1, initial = 1),
sigma = manipulate::slider(0.01, 5, step = 0.1, initial = 1))
}
[Package sdetorus version 0.1.10 Index]