mlePde2D {sdetorus} | R Documentation |
MLE for toroidal process via PDE solving in 2D
Description
Maximum Likelihood Estimation (MLE) for arbitrary diffusions, based on the transition probability density (tpd) obtained as the numerical solution of the Fokker–Planck Partial Differential Equation (PDE) in 2D.
Usage
mlePde2D(data, delta, b, sigma2, Mx = 50, My = 50, Mt = ceiling(100 *
delta), sdInitial = 0.1, linearBinning = FALSE, start, lower, upper, ...)
Arguments
data |
a matrix of dimension |
delta |
discretization step. |
b |
drift function. Must return a vector of the same size as its argument. |
sigma2 |
function giving the diagonal of the diffusion matrix. Must return a vector of the same size as its argument. |
Mx , My |
sizes of the equispaced spatial grids in |
Mt |
size of the time grid in |
sdInitial |
standard deviations of the concentrated WN giving the initial condition. |
linearBinning |
flag to indicate whether linear binning should be applied for the initial values of the tpd, instead of usual simple binning (cheaper). Linear binning is always done in the evaluation of the tpd. |
start |
starting values, a matrix with |
lower , upper |
bound for box constraints as in method |
... |
further parameters passed to |
Details
See Sections 3.4.2 and 3.4.4 in García-Portugués et al. (2019) for
details. The function currently includes the region
function for
imposing a feasibility region on the parameters of the bivariate WN
diffusion.
Value
Output from mleOptimWrapper
.
References
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. doi:10.1007/s11222-017-9790-2
Examples
# Test in OU process
alpha <- c(1, 2, -0.5)
mu <- c(0, 0)
sigma <- c(0.5, 1)
set.seed(2334567)
data <- rTrajMou(x0 = c(0, 0), A = alphaToA(alpha = alpha, sigma = sigma),
mu = mu, Sigma = diag(sigma^2), N = 500, delta = 0.5)
b <- function(x, pars) sweep(-x, 2, pars[4:5], "+") %*%
t(alphaToA(alpha = pars[1:3], sigma = sigma))
sigma2 <- function(x, pars) repRow(sigma^2, nrow(x))
exactOu <- mleMou(data = data, delta = 0.5, sigma = sigma,
start = c(1, 1, 0, 2, 2),
lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10))
head(exactOu, 2)
pdeOu <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 10, My = 10, Mt = 10,
start = rbind(c(1, 1, 0, 2, 2)),
lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10), verbose = 2)
head(pdeOu, 2)
pdeOuLin <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 10, My = 10, Mt = 10,
start = rbind(c(1, 1, 0, 2, 2)),
lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10), verbose = 2,
linearBinning = TRUE)
head(pdeOuLin, 2)
# Test in WN diffusion
alpha <- c(1, 0.5, 0.25)
mu <- c(0, 0)
sigma <- c(2, 1)
set.seed(234567)
data <- rTrajWn2D(x0 = c(0, 0), alpha = alpha, mu = mu, sigma = sigma,
N = 200, delta = 0.5)
b <- function(x, pars) driftWn2D(x = x, A = alphaToA(alpha = pars[1:3],
sigma = sigma),
mu = pars[4:5], sigma = sigma)
sigma2 <- function(x, pars) repRow(sigma^2, nrow(x))
exactOu <- mleMou(data = data, delta = 0.5, sigma = sigma,
start = c(1, 1, 0, 1, 1),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), optMethod = "nlm")
pdeWn <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 20, My = 20, Mt = 10, start = rbind(c(1, 1, 0, 1, 1)),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), verbose = 2,
optMethod = "nlm")
pdeWnLin <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 20, My = 20, Mt = 10,
start = rbind(c(1, 1, 0, 1, 1)),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), verbose = 2,
linearBinning = TRUE)
head(exactOu)
head(pdeOu)
head(pdeOuLin)