mleOu {sdetorus} | R Documentation |
Maximum likelihood estimation of the OU diffusion
Description
Computation of the maximum likelihood estimator of the
parameters of the univariate Ornstein–Uhlenbeck (OU) diffusion
from a discretized trajectory
\{X_{\Delta i}\}_{i=1}^N
. The objective
function to minimize is
\sum_{i=2}^n\log p_{\Delta}(X_{\Delta i} | X_{\Delta (i - 1)}).
Usage
mleOu(data, delta, alpha = NA, mu = NA, sigma = NA, start,
lower = c(0.01, -5, 0.01), upper = c(25, 5, 25), ...)
Arguments
data |
a vector of size |
delta |
time discretization step. |
alpha , mu , sigma |
arguments to fix a parameter to a given value and
perform the estimation on the rest. Defaults to |
start |
starting values, a matrix with |
lower , upper |
bound for box constraints as in method |
... |
further arguments to be passed to |
Details
The first element in data
is not taken into account for
estimation. See mleMou
for the multivariate case (less
efficient for dimension one).
Value
Output from mleOptimWrapper
.
Examples
set.seed(345678)
data <- rTrajOu(x0 = 0, alpha = 1, mu = 0, sigma = 1, N = 100, delta = 0.1)
mleOu(data = data, delta = 0.1, start = c(2, 1, 2), lower = c(0.1, -10, 0.1),
upper = c(25, 10, 25))
# Fixed sigma and mu
mleOu(data = data, delta = 0.1, mu = 0, sigma = 1, start = 2, lower = 0.1,
upper = 25, optMethod = "nlm")