| mleOu {sdetorus} | R Documentation |
Maximum likelihood estimation of the OU diffusion
Description
Computation of the maximum likelihood estimator of the
parameters of the univariate Ornstein–Uhlenbeck (OU) diffusion
from a discretized trajectory
\{X_{\Delta i}\}_{i=1}^N. The objective
function to minimize is
\sum_{i=2}^n\log p_{\Delta}(X_{\Delta i} | X_{\Delta (i - 1)}).
Usage
mleOu(data, delta, alpha = NA, mu = NA, sigma = NA, start,
lower = c(0.01, -5, 0.01), upper = c(25, 5, 25), ...)
Arguments
data |
a vector of size |
delta |
time discretization step. |
alpha, mu, sigma |
arguments to fix a parameter to a given value and
perform the estimation on the rest. Defaults to |
start |
starting values, a matrix with |
lower, upper |
bound for box constraints as in method |
... |
further arguments to be passed to |
Details
The first element in data is not taken into account for
estimation. See mleMou for the multivariate case (less
efficient for dimension one).
Value
Output from mleOptimWrapper.
Examples
set.seed(345678)
data <- rTrajOu(x0 = 0, alpha = 1, mu = 0, sigma = 1, N = 100, delta = 0.1)
mleOu(data = data, delta = 0.1, start = c(2, 1, 2), lower = c(0.1, -10, 0.1),
upper = c(25, 10, 25))
# Fixed sigma and mu
mleOu(data = data, delta = 0.1, mu = 0, sigma = 1, start = 2, lower = 0.1,
upper = 25, optMethod = "nlm")