mleMou {sdetorus} | R Documentation |
Maximum likelihood estimation of the multivariate OU diffusion
Description
Computation of the maximum likelihood estimator of the
parameters of the multivariate Ornstein–Uhlenbeck (OU) diffusion
from a discretized trajectory
\{X_{\Delta i}\}_{i=1}^N
. The objective
function to minimize is
\sum_{i=2}^n\log p_{\Delta}(X_{\Delta i} | X_{\Delta (i - 1)}).
Usage
mleMou(data, delta, alpha = rep(NA, 3), mu = rep(NA, 2), sigma = rep(NA,
2), start, lower = c(0.01, 0.01, -25, -pi, -pi, 0.01, 0.01),
upper = c(25, 25, 25, pi, pi, 25, 25), ...)
Arguments
data |
a matrix of size |
delta |
time discretization step. |
alpha , mu , sigma |
arguments to fix a parameter to a given value and
perform the estimation on the rest. Defaults to |
start |
starting values, a matrix with |
lower , upper |
bound for box constraints as in method |
... |
further arguments to be passed to |
Details
The first row in data
is not taken into account for
estimation. See mleOu
for the univariate case (more efficient).
mleMou
only handles p = 2
currently. It imposes that
Sigma
is diagonal and handles the parametrization of A
by
alphaToA
.
Value
Output from mleOptimWrapper
.
Examples
set.seed(345678)
data <- rTrajMou(x0 = c(0, 0), A = alphaToA(alpha = c(1, 1, 0.5),
sigma = 1:2), mu = c(1, 1),
Sigma = diag((1:2)^2), N = 200, delta = 0.5)
mleMou(data = data, delta = 0.5, start = c(1, 1, 0, 1, 1, 1, 2),
lower = c(0.1, 0.1, -25, -10, -10, 0.1, 0.1),
upper = c(25, 25, 25, 10, 10, 25, 25), maxit = 500)
# Fixed sigma and mu
mleMou(data = data, delta = 0.5, mu = c(1, 1), sigma = 1:2,
start = c(1, 1, 0), lower = c(0.1, 0.1, -25), upper = c(25, 25, 25))