| dTpdWou {sdetorus} | R Documentation | 
Conditional probability density of the WOU process
Description
Conditional probability density of the Wrapped Ornstein–Uhlenbeck (WOU) process.
Usage
dTpdWou(x, t, A, mu, Sigma, x0, maxK = 2, eigA = NULL, invASigma = NULL)
Arguments
| x | matrix of size  | 
| t | a scalar containing the times separating  | 
| A | matrix of size  | 
| mu | mean parameter. Must be in  | 
| Sigma | diffusion matrix, of size  | 
| x0 | vector of length  | 
| maxK | maximum absolute value of the windings considered in the computation of the WN. | 
| eigA | optional argument containing  | 
| invASigma | the matrix  | 
Details
See Section 3.3 in García-Portugués et al. (2019) for details.
dTpdWou1D and dTpdWou2D are more efficient
implementations for the 1D and 2D cases, respectively.
Value
A vector of length n with the density evaluated at x.
References
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. doi:10.1007/s11222-017-9790-2
Examples
# 1D
t <- 0.5
alpha <- 1
mu <- 0
sigma <- 1
x0 <- pi
x <- seq(-pi, pi, l = 10)
dTpdWou(x = cbind(x), x0 = x0, t = t, A = alpha, mu = 0, Sigma = sigma^2) -
dTpdWou1D(x = cbind(x), x0 = rep(x0, 10), t = t, alpha = alpha, mu = 0,
          sigma = sigma)
# 2D
t <- 0.5
alpha <- c(2, 1, -1)
sigma <- c(1.5, 2)
rho <- 0.9
Sigma <- diag(sigma^2)
Sigma[1, 2] <- Sigma[2, 1] <- rho * prod(sigma)
A <- alphaToA(alpha = alpha, sigma = sigma, rho = rho)
mu <- c(pi, 0)
x0 <- c(0, 0)
x <- seq(-pi, pi, l = 5)
x <- as.matrix(expand.grid(x, x))
dTpdWou(x = x, x0 = x0, t = t, A = A, mu = mu, Sigma = Sigma) -
dTpdWou2D(x = x, x0 = rbind(x0), t = t, alpha = alpha, mu = mu,
          sigma = sigma, rho = rho)