dTpdWou {sdetorus} | R Documentation |
Conditional probability density of the WOU process
Description
Conditional probability density of the Wrapped Ornstein–Uhlenbeck (WOU) process.
Usage
dTpdWou(x, t, A, mu, Sigma, x0, maxK = 2, eigA = NULL, invASigma = NULL)
Arguments
x |
matrix of size |
t |
a scalar containing the times separating |
A |
matrix of size |
mu |
mean parameter. Must be in |
Sigma |
diffusion matrix, of size |
x0 |
vector of length |
maxK |
maximum absolute value of the windings considered in the computation of the WN. |
eigA |
optional argument containing |
invASigma |
the matrix |
Details
See Section 3.3 in García-Portugués et al. (2019) for details.
dTpdWou1D
and dTpdWou2D
are more efficient
implementations for the 1D and 2D cases, respectively.
Value
A vector of length n
with the density evaluated at x
.
References
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. doi:10.1007/s11222-017-9790-2
Examples
# 1D
t <- 0.5
alpha <- 1
mu <- 0
sigma <- 1
x0 <- pi
x <- seq(-pi, pi, l = 10)
dTpdWou(x = cbind(x), x0 = x0, t = t, A = alpha, mu = 0, Sigma = sigma^2) -
dTpdWou1D(x = cbind(x), x0 = rep(x0, 10), t = t, alpha = alpha, mu = 0,
sigma = sigma)
# 2D
t <- 0.5
alpha <- c(2, 1, -1)
sigma <- c(1.5, 2)
rho <- 0.9
Sigma <- diag(sigma^2)
Sigma[1, 2] <- Sigma[2, 1] <- rho * prod(sigma)
A <- alphaToA(alpha = alpha, sigma = sigma, rho = rho)
mu <- c(pi, 0)
x0 <- c(0, 0)
x <- seq(-pi, pi, l = 5)
x <- as.matrix(expand.grid(x, x))
dTpdWou(x = x, x0 = x0, t = t, A = A, mu = mu, Sigma = Sigma) -
dTpdWou2D(x = x, x0 = rbind(x0), t = t, alpha = alpha, mu = mu,
sigma = sigma, rho = rho)