approxMleWn2D {sdetorus} | R Documentation |
Approximate MLE of the WN diffusion in 2D
Description
Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) in 2D using the wrapped Ornstein–Uhlenbeck diffusion.
Usage
approxMleWn2D(data, delta, start, alpha = rep(NA, 3), mu = rep(NA, 2),
sigma = rep(NA, 2), rho = NA, lower = c(0.01, 0.01, -25, -pi, -pi,
0.01, 0.01, -0.99), upper = c(rep(25, 3), pi, pi, 25, 25, 0.99),
maxK = 2, ...)
Arguments
data |
a matrix of dimension |
delta |
discretization step. |
start |
starting values, a matrix with |
alpha , mu , sigma , rho |
if their values are provided, the likelihood
function is optimized with respect to the rest of unspecified parameters.
The number of elements in |
lower , upper |
bound for box constraints as in method |
maxK |
maximum absolute winding number used if |
... |
further parameters passed to |
Details
See Section 3.3 in García-Portugués et al. (2019) for details.
Value
Output from mleOptimWrapper
.
References
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. doi:10.1007/s11222-017-9790-2
Examples
alpha <- c(2, 2, -0.5)
mu <- c(0, 0)
sigma <- c(1, 1)
rho <- 0.2
samp <- rTrajWn2D(x0 = c(0, 0), alpha = alpha, mu = mu, sigma = sigma,
rho = rho, N = 1000, delta = 0.1)
approxMleWn2D(data = samp, delta = 0.1, start = c(alpha, mu, sigma, rho))
approxMleWn2D(data = samp, delta = 0.1, alpha = alpha,
start = c(mu, sigma), lower = c(-pi, -pi, 0.01, 0.01),
upper = c(pi, pi, 25, 25))
mleMou(data = samp, delta = 0.1, start = c(alpha, mu, sigma),
optMethod = "Nelder-Mead")