sdcProb2df {sdcTable} | R Documentation |
Transform a problem instance
Description
sdcProb2df()
returns a data.table
given an sdcProblem input object.
Usage
sdcProb2df(obj, addDups = TRUE, addNumVars = FALSE, dimCodes = "both")
Arguments
obj |
an sdcProblem object |
addDups |
(logical), if |
addNumVars |
(logical), if |
dimCodes |
(character) allows to specify in which coding the dimensional variables should be returned. Possible choices are:
|
Value
a data.table
containing information about all cells of the given problem
Examples
# loading micro data
utils::data("microdata1", package = "sdcTable")
# we can observe that we have a micro data set consisting
# of two spanning variables ('region' and 'gender') and one
# numeric variable ('val')
# specify structure of hierarchical variable 'region'
# levels 'A' to 'D' sum up to a Total
dim.region <- data.frame(
levels=c('@','@@','@@','@@','@@'),
codes=c('Total', 'A','B','C','D'),
stringsAsFactors=FALSE)
# specify structure of hierarchical variable 'gender'
# using create_node() and add_nodes() (see ?manage_hierarchies)
dim.gender <- hier_create(root = "Total", nodes = c("male", "female"))
hier_display(dim.gender)
# create a named list with each element being a data-frame
# containing information on one dimensional variable and
# the names referring to variables in the input data
dimList <- list(region = dim.region, gender = dim.gender)
# third column containts a numeric variable
numVarInd <- 3
# no variables holding counts, numeric values, weights or sampling
# weights are available in the input data
# creating an problem instance using numeric indices
p1 <- makeProblem(
data = microdata1,
dimList = dimList,
numVarInd = 3 # third variable in `data`
)
# using variable names is also possible
p2 <- makeProblem(
data = microdata1,
dimList = dimList,
numVarInd = "val"
)
# what do we have?
print(class(p1))
# have a look at the data
df1 <- sdcProb2df(p1, addDups = TRUE,
addNumVars = TRUE, dimCodes = "original")
df2 <- sdcProb2df(p2, addDups=TRUE,
addNumVars = TRUE, dimCodes = "original")
print(df1)
identical(df1, df2)
[Package sdcTable version 0.32.6 Index]