protectLinkedTables {sdcTable} | R Documentation |
Protect two tables with common cells
Description
protect_linked_tables()
can be used to protect tables that have
common cells. It is of course required that after the anonymization process
has finished, all common cells have the same anonymization state in both
tables.
Usage
protectLinkedTables(
objectA,
objectB,
commonCells,
method = "SIMPLEHEURISTIC",
...
)
protect_linked_tables(x, y, common_cells, method = "SIMPLEHEURISTIC", ...)
Arguments
objectA |
maps to argument |
objectB |
maps to argument |
commonCells |
maps to argument |
method |
which protection algorithm should be used; choices are
|
... |
additional arguments to control the secondary cell suppression
algorithm. For details, see |
x |
a sdcProblem object |
y |
a sdcProblem object |
common_cells |
a list object defining common cells in
|
Value
a list elements x
and y
containing protected sdcProblem
objects
Author(s)
Bernhard Meindl bernhard.meindl@statistik.gv.at
See Also
Examples
## Not run:
# load micro data for further processing
utils::data("microdata2", package = "sdcTable")
# table1: defined by variables 'gender' and 'ecoOld'
md1 <- microdata2[,c(2,3,5)]
# table2: defined by variables 'region', 'gender' and 'ecoNew'
md2 <- microdata2[,c(1,2,4,5)]
# we need to create information on the hierarchies
# variable 'region': exists only in md2
d_region <- hier_create(root = "Tot", nodes = c("R1", "R2"))
# variable 'gender': exists in both datasets
d_gender <- hier_create(root = "Tot", nodes = c("m", "f"))
# variable 'eco1': exists only in md1
d_eco1 <- hier_create(root = "Tot", nodes = c("A", "B"))
d_eco1 <- hier_add(d_eco1, root = "A", nodes = c("Aa", "Ab"))
d_eco1 <- hier_add(d_eco1, root = "B", nodes = c("Ba", "Bb"))
# variable 'ecoNew': exists only in md2
d_eco2 <- hier_create(root = "Tot", nodes = c("C", "D"))
d_eco2 <- hier_add(d_eco2, root = "C", nodes = c("Ca", "Cb", "Cc"))
d_eco2 <- hier_add(d_eco2, root = "D", nodes = c("Da", "Db", "Dc"))
# creating objects holding information on dimensions
dl1 <- list(gender = d_gender, ecoOld = d_eco1)
dl2 <- list(region = d_region, gender = d_gender, ecoNew = d_eco2)
# creating input objects for further processing.
# For details, see ?makeProblem.
p1 <- makeProblem(
data = md1,
dimList = dl1,
dimVarInd = 1:2,
numVarInd = 3)
p2 <- makeProblem(
data = md2,
dimList = dl2,
dimVarInd = 1:3,
numVarInd = 4)
# the cell specified by gender == "Tot" and ecoOld == "A"
# is one of the common cells! -> we mark it as primary suppression
p1 <- change_cellstatus(
object = p1,
specs = data.frame(gender = "Tot", ecoOld = "A"),
rule = "u",
verbose = FALSE)
# the cell specified by region == "Tot" and gender == "f" and ecoNew == "C"
# is one of the common cells! -> we mark it as primary suppression
p2 <- change_cellstatus(
object = p2,
specs = data.frame(region = "Tot", gender = "f", ecoNew = "C"),
rule = "u",
verbose = FALSE)
# specifying input to define common cells
common_cells <- list()
# variable "gender"
common_cells$v.gender <- list()
common_cells$v.gender[[1]] <- "gender" # variable name in "p1"
common_cells$v.gender[[2]] <- "gender" # variable name in "p2"
# "gender" has equal characteristics on both datasets -> keyword "ALL"
common_cells$v.gender[[3]] <- "ALL"
# variables: "ecoOld" and "ecoNew"
common_cells$v.eco <- list()
common_cells$v.eco[[1]] <- "ecoOld" # variable name in "p1"
common_cells$v.eco[[2]] <- "ecoNew" # variable name in "p2"
# vector of common characteristics:
# "A" and "B" in variable "ecoOld" in "p1"
common_cells$v.eco[[3]] <- c("A", "B")
# correspond to codes "C" and "D" in variable "ecoNew" in "p2"
common_cells$v.eco[[4]] <- c("C", "D")
# protect the linked data
result <- protect_linked_tables(
x = p1,
y = p2,
common_cells = common_cells,
verbose = TRUE)
# having a look at the results
result_tab1 <- result$x
result_tab2 <- result$y
summary(result_tab1)
summary(result_tab2)
## End(Not run)