| duplicate_count_colpair {scrutiny} | R Documentation | 
Count duplicate values by column
Description
duplicate_count_colpair() takes a data frame and checks each combination of
columns for duplicates. Results are presented in a tibble, ordered by the
number of duplicates.
Usage
duplicate_count_colpair(
  data,
  ignore = NULL,
  show_rates = TRUE,
  na.rm = deprecated()
)
Arguments
data | 
 Data frame.  | 
ignore | 
 Optionally, a vector of values that should not be checked for duplicates.  | 
show_rates | 
 Logical. If   | 
na.rm | 
 [Deprecated] Missing values are never counted in any case.  | 
Value
A tibble (data frame) with these columns –
-  
xandy: Each line contains a unique combination ofdata's columns, stored in thexandyoutput columns. -  
count: Number of "duplicates", i.e., values that are present in bothxandy. -  
total_x,total_y,rate_x, andrate_y(added by default):total_xis the number of non-missing values in the column named underx. Also,rate_xis the proportion ofxvalues that are duplicated iny, i.e.,count / total_x. Likewise withtotal_yandrate_y. The tworate_*columns will be equal unlessNAvalues are present. 
Summaries with audit()
There is an S3 method for audit(),
so you can call audit() following duplicate_count_colpair(). It
returns a tibble with summary statistics.
See Also
-  
duplicate_count()for a frequency table. -  
duplicate_tally()to show instances of a value next to each instance. -  
janitor::get_dupes()to search for duplicate rows. -  
corrr::colpair_map(), a versatile tool for pairwise column analysis which the present function wraps. 
Examples
# Basic usage:
mtcars %>%
  duplicate_count_colpair()
# Summaries with `audit()`:
mtcars %>%
  duplicate_count_colpair() %>%
  audit()