| debit_map_total_n {scrutiny} | R Documentation | 
Use DEBIT with hypothetical group sizes
Description
debit_map_total_n() extends DEBIT to cases where only group
means and standard deviations (SDs) were reported, not group sizes.
The function is analogous to grim_map_total_n() and
grimmer_map_total_n(), relying on the same infrastructure.
Usage
debit_map_total_n(
  data,
  x1 = NULL,
  x2 = NULL,
  sd1 = NULL,
  sd2 = NULL,
  dispersion = 0:5,
  n_min = 1L,
  n_max = NULL,
  constant = NULL,
  constant_index = NULL,
  ...
)
Arguments
data | 
 Data frame with string columns   | 
x1, x2, sd1, sd2 | 
 Optionally, specify these arguments as column names in
  | 
dispersion | 
 Numeric. Steps up and down from half the   | 
n_min | 
 Numeric. Minimal group size. Default is 1.  | 
n_max | 
 Numeric. Maximal group size. Default is   | 
constant | 
 Optionally, add a length-2 vector or a list of length-2
vectors (such as a data frame with exactly two rows) to accompany the pairs
of dispersed values. Default is   | 
constant_index | 
 Integer (length 1). Index of   | 
... | 
 Arguments passed down to   | 
Value
A tibble with these columns:
-  
xandsd, the group-wise reported input statistics, are repeated in row pairs. -  
nis dispersed from half the inputn, withn_changetracking the differences. -  
both_consistentflags scenarios where both reportedxandsdvalues are consistent with the hypotheticalnvalues. -  
casecorresponds to the row numbers of the input data frame. -  
diris"forth"in the first half of rows and"back"in the second half."forth"means thatx2andsd2from the input are paired with the larger dispersedn, whereas"back"means thatx1andsd1are paired with the larger dispersedn. Other columns from
debit_map()are preserved.
Summaries with audit_total_n()
You can call
audit_total_n() following up on debit_map_total_n()
to get a tibble with summary statistics. It will have these columns:
-  
x1,x2,sd1,sd2, andnare the original inputs. -  
hits_totalis the number of scenarios in which all ofx1,x2,sd1, andsd2are DEBIT-consistent. It is the sum ofhits_forthandhits_backbelow. -  
hits_forthis the number of both-consistent cases that result from pairingx2andsd2with the larger dispersednvalue. -  
hits_backis the same, exceptx1andsd1are paired with the larger dispersednvalue. -  
scenarios_totalis the total number of test scenarios, whether or not bothx1andsd1as well asx2andsd2are DEBIT-consistent. -  
hit_rateis the ratio ofhits_totaltoscenarios_total. 
Call audit() following audit_total_n() to summarize results
even further.
References
Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727
Heathers, J. A. J., & Brown, N. J. L. (2019). DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.
See Also
function_map_total_n(), which created the present function using
debit_map().
Examples
# Run `debit_map_total_n()` on data like these:
df <- tibble::tribble(
  ~x1,  ~x2,  ~sd1,  ~sd2,  ~n,
  "0.30", "0.28", "0.17", "0.10", 70,
  "0.41", "0.39", "0.09", "0.15", 65
)
df
debit_map_total_n(df)