| debit_map_total_n {scrutiny} | R Documentation |
Use DEBIT with hypothetical group sizes
Description
debit_map_total_n() extends DEBIT to cases where only group
means and standard deviations (SDs) were reported, not group sizes.
The function is analogous to grim_map_total_n() and
grimmer_map_total_n(), relying on the same infrastructure.
Usage
debit_map_total_n(
data,
x1 = NULL,
x2 = NULL,
sd1 = NULL,
sd2 = NULL,
dispersion = 0:5,
n_min = 1L,
n_max = NULL,
constant = NULL,
constant_index = NULL,
...
)
Arguments
data |
Data frame with string columns |
x1, x2, sd1, sd2 |
Optionally, specify these arguments as column names in
|
dispersion |
Numeric. Steps up and down from half the |
n_min |
Numeric. Minimal group size. Default is 1. |
n_max |
Numeric. Maximal group size. Default is |
constant |
Optionally, add a length-2 vector or a list of length-2
vectors (such as a data frame with exactly two rows) to accompany the pairs
of dispersed values. Default is |
constant_index |
Integer (length 1). Index of |
... |
Arguments passed down to |
Value
A tibble with these columns:
-
xandsd, the group-wise reported input statistics, are repeated in row pairs. -
nis dispersed from half the inputn, withn_changetracking the differences. -
both_consistentflags scenarios where both reportedxandsdvalues are consistent with the hypotheticalnvalues. -
casecorresponds to the row numbers of the input data frame. -
diris"forth"in the first half of rows and"back"in the second half."forth"means thatx2andsd2from the input are paired with the larger dispersedn, whereas"back"means thatx1andsd1are paired with the larger dispersedn. Other columns from
debit_map()are preserved.
Summaries with audit_total_n()
You can call
audit_total_n() following up on debit_map_total_n()
to get a tibble with summary statistics. It will have these columns:
-
x1,x2,sd1,sd2, andnare the original inputs. -
hits_totalis the number of scenarios in which all ofx1,x2,sd1, andsd2are DEBIT-consistent. It is the sum ofhits_forthandhits_backbelow. -
hits_forthis the number of both-consistent cases that result from pairingx2andsd2with the larger dispersednvalue. -
hits_backis the same, exceptx1andsd1are paired with the larger dispersednvalue. -
scenarios_totalis the total number of test scenarios, whether or not bothx1andsd1as well asx2andsd2are DEBIT-consistent. -
hit_rateis the ratio ofhits_totaltoscenarios_total.
Call audit() following audit_total_n() to summarize results
even further.
References
Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. Psychological Science, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.1177/09567976211058727
Heathers, J. A. J., & Brown, N. J. L. (2019). DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.
See Also
function_map_total_n(), which created the present function using
debit_map().
Examples
# Run `debit_map_total_n()` on data like these:
df <- tibble::tribble(
~x1, ~x2, ~sd1, ~sd2, ~n,
"0.30", "0.28", "0.17", "0.10", 70,
"0.41", "0.39", "0.09", "0.15", 65
)
df
debit_map_total_n(df)