| plot_wis {scoringutils} | R Documentation | 
Plot Contributions to the Weighted Interval Score
Description
Visualise the components of the weighted interval score: penalties for over-prediction, under-prediction and for high dispersion (lack of sharpness)
Usage
plot_wis(scores, x = "model", relative_contributions = FALSE, flip = FALSE)
Arguments
scores | 
 A data.frame of scores based on quantile forecasts as
produced by   | 
x | 
 The variable from the scores you want to show on the x-Axis. Usually this will be "model".  | 
relative_contributions | 
 show relative contributions instead of absolute contributions. Default is FALSE and this functionality is not available yet.  | 
flip | 
 boolean (default is   | 
Value
A ggplot2 object showing a contributions from the three components of the weighted interval score
References
Bracher J, Ray E, Gneiting T, Reich, N (2020) Evaluating epidemic forecasts in an interval format. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
Examples
library(ggplot2)
scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model", "target_type"))
plot_wis(scores,
  x = "model",
  relative_contributions = TRUE
) +
  facet_wrap(~target_type)
plot_wis(scores,
  x = "model",
  relative_contributions = FALSE
) +
  facet_wrap(~target_type, scales = "free_x")