BipartiteSBM {sbm} | R Documentation |
R6 class for Bipartite SBM
Description
R6 class for Bipartite SBM
R6 class for Bipartite SBM
Super class
sbm::SBM
-> BipartiteSBM
Active bindings
dimLabels
vector of two characters giving the label of each connected dimension (row, col)
blockProp
list of two vectors of block proportions (aka prior probabilities of each block)
connectParam
parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli
probMemberships
matrix of estimated probabilities for block memberships for all nodes
nbBlocks
vector of size 2: number of blocks (rows, columns)
nbDyads
number of dyads (potential edges in the network)
nbConnectParam
number of parameter used for the connectivity
memberships
list of size 2: vector of memberships in row, in column.
indMemberships
matrix for clustering memberships
Methods
Public methods
Inherited methods
Method new()
constructor for SBM
Usage
BipartiteSBM$new( model, nbNodes, blockProp, connectParam, dimLabels = c(row = "row", col = "col"), covarParam = numeric(length(covarList)), covarList = list() )
Arguments
model
character describing the type of model
nbNodes
number of nodes in each dimension of the network
blockProp
parameters for block proportions (vector of list of vectors)
connectParam
list of parameters for connectivity with a matrix of means 'mean' and an optional scalar for the variance 'var'. The dimensions of mu must match
blockProp
lengthsdimLabels
optional labels of each dimension (in row, in column)
covarParam
optional vector of covariates effect
covarList
optional list of covariates data
Method rMemberships()
a method to sample new block memberships for the current SBM
Usage
BipartiteSBM$rMemberships(store = FALSE)
Arguments
store
should the sampled blocks be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled blocks
Method rEdges()
a method to sample a network data (edges) for the current SBM
Usage
BipartiteSBM$rEdges(store = FALSE)
Arguments
store
should the sampled edges be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled network
Method predict()
prediction under the current parameters
Usage
BipartiteSBM$predict(covarList = self$covarList, theta_p0 = 0)
Arguments
covarList
a list of covariates. By default, we use the covariates with which the model was estimated.
theta_p0
double for thresholding...
Method show()
show method
Usage
BipartiteSBM$show(type = "Bipartite Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method plot()
basic matrix plot method for BipartiteSBM object or mesoscopic plot
Usage
BipartiteSBM$plot( type = c("data", "expected", "meso"), ordered = TRUE, plotOptions = list() )
Arguments
type
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic view). Default to 'data'.
ordered
logical: should the rows and columns be reordered according to the clustering? Default to
TRUE
.plotOptions
list with the parameters for the plot. See help of the corresponding S3 method for details.
Returns
a ggplot2 object for the 'data'
and 'expected'
, a list with the igraph object g
, the layout
and the plotOptions
for the 'meso'
Method clone()
The objects of this class are cloneable with this method.
Usage
BipartiteSBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.