santaR_auto_summary {santaR} | R Documentation |
Summarise, report and save the results of a santaR analysis
Description
After multiple variables have been analysed using santaR_auto_fit
, santaR_auto_summary
helps identify significant results and summarise them in an interpretable fashion. Correction for multiple testing can be applied to generate Bonferroni [1], Benjamini-Hochberg [2] or Benjamini-Yekutieli [3] corrected p-values. P-values can be saved to disk in .csv
files. For a given significance cut-off (plotCutOff
), the number of variables significantly altered is reported and plots are automatically saved to disk by increasing p-value. The aspect of the plots can be altered such as the representation of confidence bands (showConfBand
) or the generation of a mean curve across all samples (showTotalMeanCurve
) to help assess difference between groups when group sizes are unbalanced.
Usage
santaR_auto_summary(
SANTAObjList,
targetFolder = NA,
summaryCSV = TRUE,
CSVName = "summary",
savePlot = TRUE,
plotCutOff = 0.05,
showTotalMeanCurve = TRUE,
showConfBand = TRUE,
legend = TRUE,
fdrBH = TRUE,
fdrBY = FALSE,
fdrBonf = FALSE,
CIpval = TRUE,
plotAll = FALSE
)
Arguments
SANTAObjList |
A list of SANTAObj with p-values calculated, as generated by |
targetFolder |
(NA or str) NA or the path to a folder in which to save summary.xls and plots. If NA no outputs are saved to disk. If |
summaryCSV |
If TRUE save the (corrected if applicable) p-values to |
CSVName |
(string) Filename of the csv to save. Default is |
savePlot |
If TRUE save to |
plotCutOff |
(float) P-value cut-off value to save summary plots to disk. Default 0.05. |
showTotalMeanCurve |
If TRUE add the mean curve across all groups on the plots. Default is TRUE. |
showConfBand |
If TRUE plot the confidence band for each group. Default is TRUE. |
legend |
If TRUE add a legend to the plots. Default is TRUE. |
fdrBH |
If TRUE add the Benjamini-Hochberg corrected p-value to the output. Default is TRUE. |
fdrBY |
If TRUE add the Benjamini-Yekutieli corrected p-value to the output. Default is FALSE. |
fdrBonf |
If TRUE add the Bonferroni corrected p-value to the output. Default is FALSE. |
CIpval |
If TRUE add the upper and lower confidence interval on p-value to the output. Default is TRUE. |
plotAll |
If TRUE override the |
Value
A list: result$pval.all
data.frame
of p-values, with all variables as rows and different p-value corrections as columns. result$pval.summary
data.frame
of number of variables with a p-value inferior to a cut-off. Different metric and p-value correction as rows, different cut-off (Inf 0.05, Inf 0.01, Inf 0.001) as columns.
References
[1] Bland, J. M. & Altman, D. G. Multiple significance tests: the Bonferroni method. British Medial Journal 310, 170 (1995).
[2] Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 57, 1, 289-300 (1995).
[3] Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under depencency. The Annals of Statistics 29, 1165-1188 (2001).
See Also
Other AutoProcess:
santaR_auto_fit()
,
santaR_plot()
,
santaR_start_GUI()
Other Analysis:
get_grouping()
,
get_ind_time_matrix()
,
santaR_CBand()
,
santaR_auto_fit()
,
santaR_fit()
,
santaR_plot()
,
santaR_pvalue_dist()
,
santaR_pvalue_fit()
,
santaR_start_GUI()
Examples
## 2 variables, 56 measurements, 8 subjects, 7 unique time-points
## Default parameter values decreased to ensure an execution < 2 seconds
inputData <- acuteInflammation$data[,1:2]
ind <- acuteInflammation$meta$ind
time <- acuteInflammation$meta$time
group <- acuteInflammation$meta$group
SANTAObjList <- santaR_auto_fit(inputData, ind, time, group, df=5, ncores=0, CBand=TRUE,
pval.dist=TRUE, nBoot=100, nPerm=100)
# Input data generated: 0.02 secs
# Spline fitted: 0.03 secs
# ConfBands done: 0.53 secs
# p-val dist done: 0.79 secs
# total time: 1.37 secs
result <- santaR_auto_summary(SANTAObjList)
print(result)
# $pval.all
# dist dist_upper dist_lower curveCorr dist_BH
# var_1 0.03960396 0.09783202 0.015439223 -0.2429725352 0.03960396
# var_2 0.00990099 0.05432519 0.001737742 0.0006572238 0.01980198
#
# $pval.summary
# Test Inf 0.05 Inf 0.01 Inf 0.001
# 1 dist 2 1 0
# 2 dist_BH 2 0 0