eblupfh_cluster {saens}R Documentation

EBLUPs based on a Fay-Herriot Model with Cluster Information.

Description

This function gives the Empirical Best Linear Unbiased Prediction (EBLUP) or Empirical Best (EB) predictor based on a Fay-Herriot model with cluster information for non-sampled areas.

Usage

eblupfh_cluster(
  formula,
  data,
  vardir,
  cluster,
  method = "REML",
  maxiter = 100,
  precision = 1e-04,
  scale = FALSE,
  print_result = TRUE
)

Arguments

formula

an object of class formula that contains a description of the model to be fitted. The variables included in the formula must be contained in the data.

data

a data frame or a data frame extension (e.g. a tibble).

vardir

vector or column names from data that contain variance sampling from the direct estimator for each area.

cluster

vector or column name from data that contain cluster information.

method

Fitting method can be chosen between 'ML' and 'REML'

maxiter

maximum number of iterations allowed in the Fisher-scoring algorithm. Default is 100 iterations.

precision

convergence tolerance limit for the Fisher-scoring algorithm. Default value is 0.0001.

scale

scaling auxiliary variable or not, default value is FALSE.

print_result

print coefficient or not, default value is TRUE.

Details

The model has a form that is response ~ auxiliary variables. where numeric type response variables can contain NA. When the response variable contains NA it will be estimated with cluster information.

Value

The function returns a list with the following objects df_res and fit: df_res a data frame that contains the following columns:

fit a list containing the following objects:

References

  1. Rao, J. N., & Molina, I. (2015). Small area estimation. John Wiley & Sons.

  2. Anisa, R., Kurnia, A., & Indahwati, I. (2013). Cluster information of non-sampled area in small area estimation. E-Prosiding Internasional| Departemen Statistika FMIPA Universitas Padjadjaran, 1(1), 69-76.

Examples

library(saens)

m1 <- eblupfh_cluster(y ~ x1 + x2 + x3, data = mys, vardir = "var", cluster = "clust")
m1 <- eblupfh_cluster(y ~ x1 + x2 + x3, data = mys, vardir = ~var, cluster = ~clust)

[Package saens version 0.1.0 Index]