npdeSaemix {saemix} | R Documentation |
Create an npdeObject from an saemixObject
Description
This function uses the npde library to compute normalised prediction distribution errors (npde) and normalised prediction discrepancies (npd). The simulations can also be used to plot VPCs. As of version 3.0, the plot functions for diagnostics involving VPC, npde or npd are deprecated and the user will be redirected to the current proposed method (creating an NpdeObject and using the plot functions from the library npde).
Usage
npdeSaemix(saemixObject, nsim = 1000)
Arguments
saemixObject |
a fitted object resulting from a call to saemix() |
nsim |
the number of simulations used to compute npde (1000 by default, we suggest increasing it for large datasets) |
Details
Since version 3.0, the saemix package depends on the npde package, which computes the npd/npde and
produces graphs. See the documentation for npde
for details on the computation methods
See the PDF documentation and the bookdown https://iame-researchcenter.github.io/npde_bookdown/
for details on the different plots available.
Value
An object of class NpdeObject
Author(s)
Emmanuelle Comets emmanuelle.comets@bichat.inserm.fr
References
E Comets, K Brendel, F Mentre (2008). Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Computer Methods and Programs in Biomedicine, 90:154-66.
K Brendel, E Comets, C Laffont, C Laveille, F Mentre (2006). Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharmaceutical Research, 23:2036–49
PDF documentation for npde 3.0: https://github.com/ecomets/npde30/blob/main/userguide_npde_3.1.pdf
See Also
NpdeObject
npde.plot.select
autonpde
npde.plot.scatterplot
npde.plot.dist
Examples
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,
dimnames=list(NULL, c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),error.model="constant")
saemix.options<-list(algorithm=c(1,0,0),seed=632545,save=FALSE,save.graphs=FALSE,
displayProgress=FALSE)
# Not run
# Works interactively but not in the contained environment of CRAN (it looks for a datafile
# instesad of finding the dataset in the environment)
# saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
# npde.obj<-npdeSaemix(saemix.fit)
# plot(npde.obj)
# plot(npde.obj, plot.type="vpc")
# plot(npde.obj, plot.type="covariates")
# plot(npde.obj, plot.type="cov.x.scatter")
# plot(npde.obj, plot.type="cov.ecdf")