Stochastic Approximation Expectation Maximization (SAEM) Algorithm


[Up] [Top]

Documentation for package ‘saemix’ version 3.3

Help Pages

A B C D E F G I K L M N O P R S T V X Y misc

-- A --

advanced.gof Wrapper functions to produce certain sets of default plots
AIC.SaemixObject Extract likelihood from an SaemixObject resulting from a call to saemix

-- B --

backward.procedure Backward procedure for joint selection of covariates and random effects
basic.gof Wrapper functions to produce certain sets of default plots
BIC.covariate Extract likelihood from an SaemixObject resulting from a call to saemix
BIC.SaemixObject Extract likelihood from an SaemixObject resulting from a call to saemix

-- C --

checkInitialFixedEffects Check initial fixed effects for an SaemixModel object applied to an SaemixData object
coef Extract coefficients from an saemix fit
coef,SaemixObject Extract coefficients from an saemix fit
coef-method Extract coefficients from an saemix fit
coef.saemix Extract coefficients from an saemix fit
coef.SaemixObject Extract coefficients from an saemix fit
compare.saemix Model comparison with information criteria (AIC, BIC).
compute.eta.map Functions implementing each type of plot in SAEM
compute.sres Functions implementing each type of plot in SAEM
conddist.saemix Estimate conditional mean and variance of individual parameters using the MCMC algorithm
covariate.fits Wrapper functions to produce certain sets of default plots
cow.saemix Evolution of the weight of 560 cows, in SAEM format
createSaemixObject Create saemix objects with only data filled in
createSaemixObject.empty Create saemix objects with only data filled in
createSaemixObject.initial Create saemix objects with only data filled in

-- D --

dataGen.case Bootstrap datasets
dataGen.NP Bootstrap datasets
dataGen.Par Bootstrap datasets
default.saemix.plots Wrapper functions to produce certain sets of default plots
discreteVPC VPC for non Gaussian data models
discreteVPC.aux VPC for non Gaussian data models
discreteVPCcat VPC for non Gaussian data models
discreteVPCcount VPC for non Gaussian data models
discreteVPCTTE VPC for time-to-event models

-- E --

epilepsy.saemix Epilepsy count data
estep Stochastic Approximation Expectation Maximization (SAEM) algorithm
estimateIndividualParametersNewdata Predictions for a new dataset
estimateMeanParametersNewdata Predictions for a new dataset
eta Functions to extract the individual estimates of the parameters and random effects
eta-method Functions to extract the individual estimates of the parameters and random effects
eta-methods Functions to extract the individual estimates of the parameters and random effects
eta.saemix Functions to extract the individual estimates of the parameters and random effects
eta.SaemixObject Functions to extract the individual estimates of the parameters and random effects
exploreDataCat Plot non Gaussian data
exploreDataCountHist Plot non Gaussian data
exploreDataTTE Plot non Gaussian data

-- F --

fim.saemix Computes the Fisher Information Matrix by linearisation
fitted Extract Model Predictions
fitted.saemix Extract Model Predictions
fitted.SaemixObject Extract Model Predictions
fitted.SaemixRes Extract Model Predictions
forward.procedure Backward procedure for joint selection of covariates and random effects

-- G --

gqg.mlx Log-likelihood using Gaussian Quadrature

-- I --

individual.fits Wrapper functions to produce certain sets of default plots
initialiseMainAlgo Stochastic Approximation Expectation Maximization (SAEM) algorithm
initialize-method Methods for Function initialize
initialize-methods Methods for Function initialize
interpol.lin VPC for time-to-event models
interpol.locf VPC for time-to-event models

-- K --

knee.saemix Knee pain data
kurtosis Tests for normalised prediction distribution errors

-- L --

llgq.saemix Log-likelihood using Gaussian Quadrature
llis.saemix Log-likelihood using Importance Sampling
llqg.saemix Log-likelihood using Gaussian Quadrature
logLik Extract likelihood from an SaemixObject resulting from a call to saemix
logLik.SaemixObject Extract likelihood from an SaemixObject resulting from a call to saemix
lung.saemix NCCTG Lung Cancer Data, in SAEM format

-- M --

map.saemix Estimates of the individual parameters (conditional mode)
mstep Stochastic Approximation Expectation Maximization (SAEM) algorithm
mydiag Matrix diagonal

-- N --

npdeSaemix Create an npdeObject from an saemixObject

-- O --

oxboys.saemix Heights of Boys in Oxford

-- P --

PD1.saemix Data simulated according to an Emax response model, in SAEM format
PD2.saemix Data simulated according to an Emax response model, in SAEM format
phi Functions to extract the individual estimates of the parameters and random effects
phi-method Functions to extract the individual estimates of the parameters and random effects
phi-methods Functions to extract the individual estimates of the parameters and random effects
phi.saemix Functions to extract the individual estimates of the parameters and random effects
phi.SaemixObject Functions to extract the individual estimates of the parameters and random effects
plot General plot function from SAEM
plot,SaemixData Plot of longitudinal data
plot,SaemixData-methods Plot of longitudinal data
plot,SaemixModel Plot model predictions using an SaemixModel object
plot,SaemixModel-methods Plot model predictions using an SaemixModel object
plot,SaemixObject General plot function from SAEM
plot,SaemixRes Class "SaemixRes"
plot,SaemixSimData Plot of longitudinal data
plot-method Plot of longitudinal data
plot-method Plot model predictions for a new dataset. If the dataset is large, only the first 20 subjects (id's) will be shown.
plot-method Plot model predictions using an SaemixModel object
plot-method General plot function from SAEM
plot-method Methods for Function plot
plot-methods Methods for Function plot
plot-SaemixData Plot of longitudinal data
plot-SaemixModel Plot model predictions using an SaemixModel object
plot.saemix General plot function from SAEM
plot.SaemixData Plot of longitudinal data
plot.SaemixModel Plot model predictions for a new dataset. If the dataset is large, only the first 20 subjects (id's) will be shown.
plot.SaemixSimData Plot of longitudinal data
plotDiscreteData Plot non Gaussian data
plotDiscreteData.aux Plot non Gaussian data
plotDiscreteDataElement Plot non Gaussian data
plotnpde General plot function from SAEM
predict,SaemixObject Class "SaemixObject"
predict-method Methods for Function predict
predict-methods Methods for Function predict
predict.SaemixModel Predictions for a new dataset
print,SaemixData Class "SaemixData"
print,SaemixModel Class "SaemixModel"
print,SaemixObject Class "SaemixObject"
print,SaemixRes Class "SaemixRes"
print-method Methods for Function print
print-methods Methods for Function print
print.saemix Methods for Function print
psi Functions to extract the individual estimates of the parameters and random effects
psi-method Functions to extract the individual estimates of the parameters and random effects
psi-methods Functions to extract the individual estimates of the parameters and random effects
psi.saemix Functions to extract the individual estimates of the parameters and random effects
psi.SaemixObject Functions to extract the individual estimates of the parameters and random effects

-- R --

rapi.saemix Rutgers Alcohol Problem Index
readSaemix,SaemixData Create a longitudinal data structure from a file or a dataframe Helper function not intended to be called by the user
readSaemix-method Create a longitudinal data structure from a file or a dataframe Helper function not intended to be called by the user
replace.data.options Function setting the default options for the plots in SAEM
replace.plot.options Function setting the default options for the plots in SAEM
replaceData Replace the data element in an SaemixObject object
replaceData-methods Replace the data element in an SaemixObject object
replaceData.saemixObject Replace the data element in an SaemixObject object
resid Extract Model Residuals
resid.saemix Extract Model Residuals
resid.SaemixObject Extract Model Residuals
resid.SaemixRes Extract Model Residuals
residuals Extract Model Residuals
residuals.saemix Extract Model Residuals
residuals.SaemixObject Extract Model Residuals
residuals.SaemixRes Extract Model Residuals

-- S --

saemix Stochastic Approximation Expectation Maximization (SAEM) algorithm
saemix.bootstrap Bootstrap for saemix fits
saemix.data.setoptions Function setting the default options for the plots in SAEM
saemix.plot.convergence Functions implementing each type of plot in SAEM
saemix.plot.correlations Functions implementing each type of plot in SAEM
saemix.plot.data Functions implementing each type of plot in SAEM
saemix.plot.distpsi Functions implementing each type of plot in SAEM
saemix.plot.distribresiduals Functions implementing each type of plot in SAEM
saemix.plot.fits Functions implementing each type of plot in SAEM
saemix.plot.llis Functions implementing each type of plot in SAEM
saemix.plot.mirror Functions implementing each type of plot in SAEM
saemix.plot.npde Functions implementing each type of plot in SAEM
saemix.plot.obsvspred Functions implementing each type of plot in SAEM
saemix.plot.parcov Functions implementing each type of plot in SAEM
saemix.plot.parcov.aux Functions implementing each type of plot in SAEM
saemix.plot.randeff Functions implementing each type of plot in SAEM
saemix.plot.randeffcov Functions implementing each type of plot in SAEM
saemix.plot.scatterresiduals Functions implementing each type of plot in SAEM
saemix.plot.select Plots of the results obtained by SAEM
saemix.plot.setoptions Function setting the default options for the plots in SAEM
saemix.plot.vpc Functions implementing each type of plot in SAEM
saemix.predict Compute model predictions after an saemix fit
saemixControl List of options for running the algorithm SAEM
SaemixData Class "SaemixData"
saemixData Function to create an SaemixData object
SaemixData-class Class "SaemixData"
SaemixModel Class "SaemixModel"
saemixModel Function to create an SaemixModel object
SaemixModel-class Class "SaemixModel"
SaemixObject Class "SaemixObject"
SaemixObject-class Class "SaemixObject"
saemixPredictNewdata Predictions for a new dataset
SaemixRepData Class "SaemixData"
SaemixRepData-class Class "SaemixData"
SaemixRes Class "SaemixRes"
SaemixRes-class Class "SaemixRes"
SaemixSimData Class "SaemixData"
SaemixSimData-class Class "SaemixData"
sampDist.NP Bootstrap datasets
sampDist.NPcond Bootstrap datasets
sampDist.Par Bootstrap datasets
show,SaemixData Class "SaemixData"
show,SaemixModel Class "SaemixModel"
show,SaemixObject Class "SaemixObject"
show,SaemixRes Class "SaemixRes"
show-method Methods for Function show
show-methods Methods for Function show
showall Methods for Function showall
showall,SaemixData Class "SaemixData"
showall,SaemixModel Class "SaemixModel"
showall,SaemixObject Class "SaemixObject"
showall,SaemixRes Class "SaemixRes"
showall-method Methods for Function showall
showall-methods Methods for Function showall
simul.saemix Perform simulations under the model for an saemixObject object
simulate.SaemixObject Perform simulations under the model for an saemixObject object
simulateContinuousSaemix Perform simulations under the model for an saemixObject object
simulateDiscreteSaemix Perform simulations under the model for an saemixObject object defined by its log-likelihood
simulateIndividualParameters Perform simulations under the model for an saemixObject object
simulateTTESaemix Perform simulations under the model for an saemixObject object defined by its log-likelihood
skewness Tests for normalised prediction distribution errors
step.saemix Stepwise procedure for joint selection of covariates and random effects
stepwise.procedure Stepwise procedure for joint selection of covariates and random effects
subset Data subsetting
subset-methods Data subsetting
subset.SaemixData Data subsetting
summary Methods for Function summary
summary,SaemixData Methods for Function summary
summary,SaemixModel Class "SaemixModel"
summary,SaemixObject Class "SaemixObject"
summary-method Methods for Function summary
summary-methods Methods for Function summary

-- T --

testnpde Tests for normalised prediction distribution errors
theo.saemix Pharmacokinetics of theophylline
toenail.saemix Toenail data
transform Transform covariates
transform.numeric Transform covariates
transform.SaemixData Transform covariates
transformCatCov Transform covariates
transformContCov Transform covariates

-- V --

validate.covariance.model Validate the structure of the covariance model
validate.names Name validation (## )Helper function not intended to be called by the user)
vcov Extracts the Variance-Covariance Matrix for a Fitted Model Object
vcov.SaemixObject Extracts the Variance-Covariance Matrix for a Fitted Model Object
vcov.SaemixRes Extracts the Variance-Covariance Matrix for a Fitted Model Object

-- X --

xbinning Internal functions used to produce prediction intervals (from the npde package)

-- Y --

yield.saemix Wheat yield in crops treated with fertiliser, in SAEM format

-- misc --

[ Get/set methods for SaemixData object
[-method Get/set methods for SaemixData object
[-method Get/set methods for SaemixModel object
[-method Get/set methods for SaemixObject object
[-method Get/set methods for SaemixRes object
[<--method Class "SaemixModel"
[<--method Class "SaemixObject"
[<--method Get/set methods for SaemixData object