expose {ruler} | R Documentation |
Expose data to rule packs
Description
Function for applying rule packs to data.
Usage
expose(.tbl, ..., .rule_sep = inside_punct("\\._\\."),
.remove_obeyers = TRUE, .guess = TRUE)
Arguments
.tbl |
Data frame of interest. |
... |
Rule packs. They can be in pure form or inside a list (at any depth). |
.rule_sep |
Regular expression used as separator between column and rule names in col packs and cell packs. |
.remove_obeyers |
Whether to remove elements which obey rules from report. |
.guess |
Whether to guess type of unsupported rule pack type (see Details). |
Details
expose()
applies all supplied rule packs to data, creates an
exposure object based on results and stores it to attribute 'exposure'.
It is guaranteed that .tbl
is not modified in any other way in order to
use expose()
inside a pipe
.
It is a good idea to name all rule packs: explicitly in ...
(if they are
supplied not inside list) or during creation with respective rule pack
function. In case of missing name it is imputed based on possibly existing
exposure attribute in .tbl
and supplied rule packs. Imputation is similar
to one in rules()
but applied to every pack type separately.
Default value for .rule_sep
is the regular expression characters ._. surrounded by non alphanumeric characters
. It is picked to be used
smoothly with dplyr
's scoped verbs and rules()
instead
of pure list. In most cases it shouldn't be changed but if needed it
should align with .prefix
in rules()
.
Value
A .tbl
with possibly added 'exposure' attribute containing the
resulting exposure. If .tbl
already contains 'exposure' attribute then
the result is binded with it.
Guessing
To work properly in some edge cases one should specify pack types with
appropriate function. However with .guess
equals to TRUE
expose
will guess the pack type based on its output after applying to
.tbl
. It uses the following features:
Presence of non-logical columns: if present then the guess is group pack. Grouping columns are guessed as all non-logical. This works incorrectly if some grouping column is logical: it will be guessed as result of applying the rule. Note that on most occasions this edge case will produce error about grouping columns define non-unique levels.
Combination of whether number of rows equals 1 (
n_rows_one
) and presence of.rule_sep
in all column names (all_contain_sep
). Guesses are:-
Data pack if
n_rows_one == TRUE
andall_contain_sep == FALSE
. -
Column pack if
n_rows_one == TRUE
andall_contain_sep == TRUE
. -
Row pack if
n_rows_one == FALSE
andall_contain_sep == FALSE
. This works incorrectly if output has one row which is checked. In this case it will be guessed as data pack. -
Cell pack if
n_rows_one == FALSE
andall_contain_sep == TRUE
. This works incorrectly if output has one row in which cells are checked. In this case it will be guessed as column pack.
-
Examples
my_rule_pack <- . %>% dplyr::summarise(nrow_neg = nrow(.) < 0)
my_data_packs <- data_packs(my_data_pack_1 = my_rule_pack)
# These pipes give identical results
mtcars %>%
expose(my_data_packs) %>%
get_report()
mtcars %>%
expose(my_data_pack_1 = my_rule_pack) %>%
get_report()
# This throws an error because no pack type is specified for my_rule_pack
## Not run:
mtcars %>% expose(my_data_pack_1 = my_rule_pack, .guess = FALSE)
## End(Not run)
# Edge cases against using 'guess = TRUE' for robust code
group_rule_pack <- . %>%
dplyr::mutate(vs_one = vs == 1) %>%
dplyr::group_by(vs_one, am) %>%
dplyr::summarise(n_low = dplyr::n() > 10)
group_rule_pack_dummy <- . %>%
dplyr::mutate(vs_one = vs == 1) %>%
dplyr::group_by(mpg, vs_one, wt) %>%
dplyr::summarise(n_low = dplyr::n() > 10)
row_rule_pack <- . %>% dplyr::transmute(neg_row_sum = rowSums(.) < 0)
cell_rule_pack <- . %>% dplyr::transmute_all(rules(neg_value = . < 0))
# Only column 'am' is guessed as grouping which defines non-unique levels.
## Not run:
mtcars %>%
expose(group_rule_pack, .remove_obeyers = FALSE, .guess = TRUE) %>%
get_report()
## End(Not run)
# Values in `var` should contain combination of three grouping columns but
# column 'vs_one' is guessed as rule. No error is thrown because the guessed
# grouping column define unique levels.
mtcars %>%
expose(group_rule_pack_dummy, .remove_obeyers = FALSE, .guess = TRUE) %>%
get_report()
# Results should have in column 'id' value 1 and not 0.
mtcars %>%
dplyr::slice(1) %>%
expose(row_rule_pack) %>%
get_report()
mtcars %>%
dplyr::slice(1) %>%
expose(cell_rule_pack) %>%
get_report()