cor_mat {rstatix} | R Documentation |
Compute Correlation Matrix with P-values
Description
Compute correlation matrix with p-values. Numeric columns in the data are detected and automatically selected for the analysis. You can also specify variables of interest to be used in the correlation analysis.
Usage
cor_mat(
data,
...,
vars = NULL,
method = "pearson",
alternative = "two.sided",
conf.level = 0.95
)
cor_pmat(
data,
...,
vars = NULL,
method = "pearson",
alternative = "two.sided",
conf.level = 0.95
)
cor_get_pval(x)
Arguments
data |
a data.frame containing the variables. |
... |
One or more unquoted expressions (or variable names) separated by commas. Used to select a variable of interest. |
vars |
a character vector containing the variable names of interest. |
method |
a character string indicating which correlation
coefficient is to be used for the test. One of |
alternative |
indicates the alternative hypothesis and must be
one of |
conf.level |
confidence level for the returned confidence interval. Currently only used for the Pearson product moment correlation coefficient if there are at least 4 complete pairs of observations. |
x |
an object of class |
Value
a data frame
Functions
-
cor_mat()
: compute correlation matrix with p-values. Returns a data frame containing the matrix of the correlation coefficients. The output has an attribute named "pvalue", which contains the matrix of the correlation test p-values. -
cor_pmat()
: compute the correlation matrix but returns only the p-values of the tests. -
cor_get_pval()
: extract a correlation matrix p-values from an object of classcor_mat()
. P-values are not adjusted.
See Also
cor_test()
, cor_reorder()
,
cor_gather()
, cor_select()
,
cor_as_symbols()
, pull_triangle()
,
replace_triangle()
Examples
# Data preparation
#:::::::::::::::::::::::::::::::::::::::::::
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
head(mydata, 3)
# Compute correlation matrix
#::::::::::::::::::::::::::::::::::::::::::
# Correlation matrix between all variables
cor.mat <- mydata %>% cor_mat()
cor.mat
# Specify some variables of interest
mydata %>% cor_mat(mpg, hp, wt)
# Or remove some variables in the data
# before the analysis
mydata %>% cor_mat(-mpg, -hp)
# Significance levels
#::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_get_pval()
# Visualize
#::::::::::::::::::::::::::::::::::::::::::
# Insignificant correlations are marked by crosses
cor.mat %>%
cor_reorder() %>%
pull_lower_triangle() %>%
cor_plot(label = TRUE)
# Gather/collapse correlation matrix into long format
#::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_gather()