Pipe-Friendly Framework for Basic Statistical Tests


[Up] [Top]

Documentation for package ‘rstatix’ version 0.7.2

Help Pages

A B C D E F G I K L M O P R S T W

-- A --

add_significance Add P-value Significance Symbols
add_xy_position Autocompute P-value Positions For Plotting Significance
add_x_position Autocompute P-value Positions For Plotting Significance
add_y_position Autocompute P-value Positions For Plotting Significance
adjust_pvalue Adjust P-values for Multiple Comparisons
anova_summary Create Nice Summary Tables of ANOVA Results
anova_test Anova Test
as_cor_mat Convert a Correlation Test Data Frame into a Correlation Matrix

-- B --

binom_test Exact Binomial Test
box_m Box's M-test for Homogeneity of Covariance Matrices

-- C --

chisq_descriptives Chi-squared Test for Count Data
chisq_test Chi-squared Test for Count Data
cochran_qtest Cochran's Q Test
cohens_d Compute Cohen's d Measure of Effect Size
convert_as_factor Factors
cor_as_symbols Replace Correlation Coefficients by Symbols
cor_gather Reshape Correlation Data
cor_get_pval Compute Correlation Matrix with P-values
cor_mark_significant Add Significance Levels To a Correlation Matrix
cor_mat Compute Correlation Matrix with P-values
cor_plot Visualize Correlation Matrix Using Base Plot
cor_pmat Compute Correlation Matrix with P-values
cor_reorder Reorder Correlation Matrix
cor_select Subset Correlation Matrix
cor_spread Reshape Correlation Data
cor_test Correlation Test
counts_to_cases Convert a Table of Counts into a Data Frame of cases
cramer_v Compute Cramer's V
create_test_label Extract Label Information from Statistical Tests

-- D --

df_arrange Arrange Rows by Column Values
df_get_var_names Get User Specified Variable Names
df_group_by Group a Data Frame by One or more Variables
df_label_both Functions to Label Data Frames by Grouping Variables
df_label_value Functions to Label Data Frames by Grouping Variables
df_nest_by Nest a Tibble By Groups
df_select Select Columns in a Data Frame
df_split_by Split a Data Frame into Subset
df_unite Unite Multiple Columns into One
df_unite_factors Unite Multiple Columns into One
doo Alternative to dplyr::do for Doing Anything
dunn_test Dunn's Test of Multiple Comparisons

-- E --

emmeans_test Pairwise Comparisons of Estimated Marginal Means
eta_squared Effect Size for ANOVA
expected_freq Chi-squared Test for Count Data

-- F --

factorial_design Build Factorial Designs for ANOVA
fisher_test Fisher's Exact Test for Count Data
freq_table Compute Frequency Table
friedman_effsize Friedman Test Effect Size (Kendall's W Value)
friedman_test Friedman Rank Sum Test

-- G --

games_howell_test Games Howell Post-hoc Tests
get_anova_table Anova Test
get_comparisons Create a List of Possible Comparisons Between Groups
get_description Extract Label Information from Statistical Tests
get_emmeans Pairwise Comparisons of Estimated Marginal Means
get_mode Compute Mode
get_n Extract Label Information from Statistical Tests
get_pwc_label Extract Label Information from Statistical Tests
get_summary_stats Compute Summary Statistics
get_test_label Extract Label Information from Statistical Tests
get_y_position Autocompute P-value Positions For Plotting Significance

-- I --

identify_outliers Identify Univariate Outliers Using Boxplot Methods
is_extreme Identify Univariate Outliers Using Boxplot Methods
is_outlier Identify Univariate Outliers Using Boxplot Methods

-- K --

kruskal_effsize Kruskal-Wallis Effect Size
kruskal_test Kruskal-Wallis Test

-- L --

levene_test Levene's Test

-- M --

mahalanobis_distance Compute Mahalanobis Distance and Flag Multivariate Outliers
make_clean_names Make Clean Names
mcnemar_test McNemar's Chi-squared Test for Count Data
mshapiro_test Shapiro-Wilk Normality Test
multinom_test Exact Multinomial Test

-- O --

observed_freq Chi-squared Test for Count Data

-- P --

pairwise_binom_test Exact Binomial Test
pairwise_binom_test_against_p Exact Binomial Test
pairwise_chisq_gof_test Chi-squared Test for Count Data
pairwise_chisq_test_against_p Chi-squared Test for Count Data
pairwise_fisher_test Fisher's Exact Test for Count Data
pairwise_mcnemar_test McNemar's Chi-squared Test for Count Data
pairwise_prop_test Proportion Test
pairwise_sign_test Sign Test
pairwise_t_test T-test
pairwise_wilcox_test Wilcoxon Tests
partial_eta_squared Effect Size for ANOVA
pearson_residuals Chi-squared Test for Count Data
plot.anova_test Anova Test
print.anova_test Anova Test
prop_test Proportion Test
prop_trend_test Test for Trend in Proportions
pull_lower_triangle Pull Lower and Upper Triangular Part of a Matrix
pull_triangle Pull Lower and Upper Triangular Part of a Matrix
pull_upper_triangle Pull Lower and Upper Triangular Part of a Matrix
p_adj_names Rounding and Formatting p-values
p_detect Rounding and Formatting p-values
p_format Rounding and Formatting p-values
p_mark_significant Rounding and Formatting p-values
p_names Rounding and Formatting p-values
p_round Rounding and Formatting p-values

-- R --

remove_ns Remove Non-Significant from Statistical Tests
reorder_levels Factors
replace_lower_triangle Replace Lower and Upper Triangular Part of a Matrix
replace_triangle Replace Lower and Upper Triangular Part of a Matrix
replace_upper_triangle Replace Lower and Upper Triangular Part of a Matrix
row_wise_fisher_test Fisher's Exact Test for Count Data
row_wise_prop_test Proportion Test

-- S --

sample_n_by Sample n Rows By Group From a Table
set_ref_level Factors
shapiro_test Shapiro-Wilk Normality Test
sign_test Sign Test
std_residuals Chi-squared Test for Count Data

-- T --

tukey_hsd Tukey Honest Significant Differences
tukey_hsd.data.frame Tukey Honest Significant Differences
tukey_hsd.default Tukey Honest Significant Differences
tukey_hsd.lm Tukey Honest Significant Differences
t_test T-test

-- W --

welch_anova_test Welch One-Way ANOVA Test
wilcox_effsize Wilcoxon Effect Size
wilcox_test Wilcoxon Tests