predictive_error.stanreg {rstanarm} | R Documentation |
In-sample or out-of-sample predictive errors
Description
This is a convenience function for computing y - y^{rep}
(in-sample, for observed y
) or y - \tilde{y}
(out-of-sample, for new or held-out y
). The method for stanreg objects
calls posterior_predict
internally, whereas the method for
matrices accepts the matrix returned by posterior_predict
as input and
can be used to avoid multiple calls to posterior_predict
.
Usage
## S3 method for class 'stanreg'
predictive_error(
object,
newdata = NULL,
draws = NULL,
re.form = NULL,
seed = NULL,
offset = NULL,
...
)
## S3 method for class 'matrix'
predictive_error(object, y, ...)
## S3 method for class 'ppd'
predictive_error(object, y, ...)
Arguments
object |
Either a fitted model object returned by one of the
rstanarm modeling functions (a stanreg
object) or, for the matrix method, a matrix of draws from the
posterior predictive distribution returned by
|
newdata , draws , seed , offset , re.form |
Optional arguments passed to
|
... |
Currently ignored. |
y |
For the matrix method only, a vector of |
Value
A draws
by nrow(newdata)
matrix. If newdata
is
not specified then it will be draws
by nobs(object)
.
Note
The Note section in posterior_predict
about
newdata
for binomial models also applies for
predictive_error
, with one important difference. For
posterior_predict
if the left-hand side of the model formula is
cbind(successes, failures)
then the particular values of
successes
and failures
in newdata
don't matter, only
that they add to the desired number of trials. This is not the case
for predictive_error
. For predictive_error
the particular
value of successes
matters because it is used as y
when
computing the error.
See Also
posterior_predict
to draw
from the posterior predictive distribution without computing predictive
errors.
Examples
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
err1 <- predictive_error(example_model, draws = 50)
hist(err1)
# Using newdata with a binomial model
formula(example_model)
nd <- data.frame(
size = c(10, 20),
incidence = c(5, 10),
period = factor(c(1,2)),
herd = c(1, 15)
)
err2 <- predictive_error(example_model, newdata = nd, draws = 10, seed = 1234)
# stanreg vs matrix methods
fit <- stan_glm(mpg ~ wt, data = mtcars, iter = 300)
preds <- posterior_predict(fit, seed = 123)
all.equal(
predictive_error(fit, seed = 123),
predictive_error(preds, y = fit$y)
)
}