pairs.stanreg {rstanarm} | R Documentation |
Pairs method for stanreg objects
Description
Interface to bayesplot's
mcmc_pairs
function for use with
rstanarm models. Be careful not to specify too many parameters to
include or the plot will be both hard to read and slow to render.
Usage
## S3 method for class 'stanreg'
pairs(
x,
pars = NULL,
regex_pars = NULL,
condition = pairs_condition(nuts = "accept_stat__"),
...
)
Arguments
x |
A fitted model object returned by one of the
rstanarm modeling functions. See |
pars |
An optional character vector of parameter names. All parameters are included by default, but for models with more than just a few parameters it may be far too many to visualize on a small computer screen and also may require substantial computing time. |
regex_pars |
An optional character vector of regular
expressions to use for parameter selection. |
condition |
Same as the |
... |
Optional arguments passed to
|
Examples
if (.Platform$OS.type != "windows" || .Platform$r_arch != "i386") {
if (!exists("example_model")) example(example_model)
bayesplot::color_scheme_set("purple")
# see 'condition' argument above for details on the plots below and
# above the diagonal. default is to split by accept_stat__.
pairs(example_model, pars = c("(Intercept)", "log-posterior"))
# for demonstration purposes, intentionally fit a model that
# will (almost certainly) have some divergences
fit <- stan_glm(
mpg ~ ., data = mtcars,
iter = 1000,
# this combo of prior and adapt_delta should lead to some divergences
prior = hs(),
adapt_delta = 0.9,
refresh = 0
)
pairs(fit, pars = c("wt", "sigma", "log-posterior"))
# requires hexbin package
# pairs(
# fit,
# pars = c("wt", "sigma", "log-posterior"),
# transformations = list(sigma = "log"), # show log(sigma) instead of sigma
# off_diag_fun = "hex" # use hexagonal heatmaps instead of scatterplots
# )
bayesplot::color_scheme_set("brightblue")
pairs(
fit,
pars = c("(Intercept)", "wt", "sigma", "log-posterior"),
transformations = list(sigma = "log"),
off_diag_args = list(size = 3/4, alpha = 1/3), # size and transparency of scatterplot points
np_style = pairs_style_np(div_color = "black", div_shape = 2) # color and shape of the divergences
)
# Using the condition argument to show divergences above the diagonal
pairs(
fit,
pars = c("(Intercept)", "wt", "log-posterior"),
condition = pairs_condition(nuts = "divergent__")
)
}