rsem.emmusig {rsem} | R Documentation |
Robust mean and covariance matrix using Huber-type weight
Description
Robust mean and covariance matrix using Huber-type weight.
Usage
rsem.emmusig(xpattern, varphi=.1, max.it=1000, st='i')
Arguments
xpattern |
Missing data pattern output from |
varphi |
Proportion of data to be down-weighted. Default is 0.1. |
max.it |
Maximum number of iterations for EM. Default is 1000 |
st |
Starting values for EM algorithm. The default is 0 for mean and I for covariance. Alternative, the starting values can be estimated according to MCD. |
Details
Estimate mean and covariance matrix using the expectation robust (ER) algorithm.
Value
err |
Error code. 0: good. 1: maximum iterations are exceeded. |
mu |
Mean vector |
sigma |
Covariance matrix |
Author(s)
Ke-Hai Yuan and Zhiyong Zhang
References
Ke-Hai Yuan and Zhiyong Zhang (2011) Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
See Also
Examples
#dset<-read.table('MardiaMV25.dat.txt', na.string='-99')
#dset<-data.matrix(dset)
#n<-dim(dset)[1]
#p<-dim(dset)[2]
#miss_pattern<-rsem.pattern(n,p,dset)
#misinfo<-miss_pattern$misinfo
#V_forana<-c(1,2,4,5)
#em_results<-rsem.emmusig(dset,misinfo)
#em_results
[Package rsem version 0.5.1 Index]