Robust Structural Equation Modeling with Missing Data and Auxiliary Variables


[Up] [Top]

Documentation for package ‘rsem’ version 0.5.1

Help Pages

rsem-package Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
mardiamv25 Simulated data
mardiamv25_contaminated Simulated data
rsem The main function for robust SEM analysis
rsem.Ascov Sandwich-type covariance matrix
rsem.DP Generate a duplication matrix
rsem.emmusig Robust mean and covariance matrix using Huber-type weight
rsem.fit Calculate robust test statistics
rsem.gname Internal function
rsem.index rsem.index function
rsem.indexv rsem.indexv function
rsem.indexvc rsem.indexvc function
rsem.lavaan Conduct robust SEM analysis using lavaan
rsem.pattern Obtaining missing data patterns
rsem.print Organize the output for Lavaan with robust s.e. and test statistics
rsem.se Calculate robust standard errors
rsem.ssq Calculate the squared sum of a matrix
rsem.switch swith function
rsem.switch.gamma Internal function
rsem.vec Stacking a matrix to a vector
rsem.vech Stacking lower triange of a matrix to a vector
rsem.weight Calculate weight for each subject
semdiag.call.eqs Run EQS from R
semdiag.combinations Enumerate the Combinations of the Elements of a Vector
semdiag.read.eqs Import of EQS outputs into R
semdiag.run.eqs Run EQS from R