OutlierSign1 {rrcovHD} | R Documentation |
Outlier identification in high dimensions using the SIGN1 algorithm
Description
Fast algorithm for identifying multivariate outliers in high-dimensional and/or large datasets, using spatial signs, see Filzmoser, Maronna, and Werner (CSDA, 2007). The computation of the distances is based on Mahalanobis distances.
Usage
OutlierSign1(x, ...)
## Default S3 method:
OutlierSign1(x, grouping, qcrit = 0.975, trace=FALSE, ...)
## S3 method for class 'formula'
OutlierSign1(formula, data, ..., subset, na.action)
Arguments
formula |
a formula with no response variable, referring only to numeric variables. |
data |
an optional data frame (or similar: see
|
subset |
an optional vector used to select rows (observations) of the
data matrix |
na.action |
a function which indicates what should happen
when the data contain |
... |
arguments passed to or from other methods. |
x |
a matrix or data frame. |
grouping |
grouping variable: a factor specifying the class for each observation. |
qcrit |
a numeric value between 0 and 1 indicating the quantile to be used as critical value for outlier detection (default to 0.975). |
trace |
whether to print intermediate results. Default is |
Details
Based on the robustly sphered and normed data, robust principal components are computed. These are used for computing the covariance matrix which is the basis for Mahalanobis distances. A critical value from the chi-square distribution is then used as outlier cutoff.
Value
An S4 object of class OutlierSign1
which
is a subclass of the virtual class Outlier
.
Author(s)
Valentin Todorov valentin.todorov@chello.at
References
P. Filzmoser, R. Maronna and M. Werner (2008). Outlier identification in high dimensions, Computational Statistics & Data Analysis, Vol. 52 1694–1711.
Filzmoser P & Todorov V (2013). Robust tools for the imperfect world, Information Sciences 245, 4–20. doi:10.1016/j.ins.2012.10.017.
See Also
OutlierSign1
, OutlierSign2
, Outlier
Examples
data(hemophilia)
obj <- OutlierSign1(gr~.,data=hemophilia)
obj
getDistance(obj) # returns an array of distances
getClassLabels(obj, 1) # returns an array of indices for a given class
getCutoff(obj) # returns an array of cutoff values (for each class, usually equal)
getFlag(obj) # returns an 0/1 array of flags
plot(obj, class=2) # standard plot function