CSimca |
Classification in high dimensions based on the (classical) SIMCA method |
CSimca-class |
Class '"CSimca"' - classification in high dimensions based on the (classical) SIMCA method |
CSimca.default |
Classification in high dimensions based on the (classical) SIMCA method |
CSimca.formula |
Classification in high dimensions based on the (classical) SIMCA method |
getClassLabels |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getClassLabels-method |
Class '"Outlier"' - a base class for outlier identification |
getClassLabels-methods |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getCutoff |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getCutoff-method |
Class 'OutlierMahdist' - Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
getCutoff-method |
Class '"OutlierPCDist"' - Outlier identification in high dimensions using using the PCDIST algorithm |
getCutoff-method |
Class '"OutlierPCOut"' - Outlier identification in high dimensions using using the PCOUT algorithm |
getCutoff-method |
Class '"OutlierSign1"' - Outlier identification in high dimensions using the SIGN1 algorithm |
getCutoff-method |
Class '"OutlierSign2"' - Outlier identification in high dimensions using the SIGN2 algorithm |
getCutoff-methods |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getDistance-method |
Class '"Outlier"' - a base class for outlier identification |
getDistance-method |
Class 'OutlierMahdist' - Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
getDistance-method |
Class '"OutlierPCDist"' - Outlier identification in high dimensions using using the PCDIST algorithm |
getDistance-method |
Class '"OutlierPCOut"' - Outlier identification in high dimensions using using the PCOUT algorithm |
getDistance-method |
Class '"OutlierSign1"' - Outlier identification in high dimensions using the SIGN1 algorithm |
getDistance-method |
Class '"OutlierSign2"' - Outlier identification in high dimensions using the SIGN2 algorithm |
getFlag-method |
Class '"Outlier"' - a base class for outlier identification |
getOutliers |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getOutliers-method |
Class '"Outlier"' - a base class for outlier identification |
getOutliers-methods |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getQuan-method |
Class 'SPcaGrid' - Sparse Robust PCA using PP - GRID search Algorithm |
getWeight |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
getWeight-method |
Class '"Outlier"' - a base class for outlier identification |
getWeight-methods |
Accessor methods to the essential slots of 'Outlier' and its subclasses |
kibler |
1985 Auto Imports Database |
kibler.orig |
1985 Auto Imports Database |
Outlier-class |
Class '"Outlier"' - a base class for outlier identification |
OutlierMahdist |
Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
OutlierMahdist-class |
Class 'OutlierMahdist' - Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
OutlierMahdist.default |
Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
OutlierMahdist.formula |
Outlier identification using robust (mahalanobis) distances based on robust multivariate location and covariance matrix |
OutlierPCDist |
Outlier identification in high dimensions using the PCDIST algorithm |
OutlierPCDist-class |
Class '"OutlierPCDist"' - Outlier identification in high dimensions using using the PCDIST algorithm |
OutlierPCDist.default |
Outlier identification in high dimensions using the PCDIST algorithm |
OutlierPCDist.formula |
Outlier identification in high dimensions using the PCDIST algorithm |
OutlierPCOut |
Outlier identification in high dimensions using the PCOUT algorithm |
OutlierPCOut-class |
Class '"OutlierPCOut"' - Outlier identification in high dimensions using using the PCOUT algorithm |
OutlierPCOut.default |
Outlier identification in high dimensions using the PCOUT algorithm |
OutlierPCOut.formula |
Outlier identification in high dimensions using the PCOUT algorithm |
OutlierSign1 |
Outlier identification in high dimensions using the SIGN1 algorithm |
OutlierSign1-class |
Class '"OutlierSign1"' - Outlier identification in high dimensions using the SIGN1 algorithm |
OutlierSign1.default |
Outlier identification in high dimensions using the SIGN1 algorithm |
OutlierSign1.formula |
Outlier identification in high dimensions using the SIGN1 algorithm |
OutlierSign2 |
Outlier identification in high dimensions using the SIGN2 algorithm |
OutlierSign2-class |
Class '"OutlierSign2"' - Outlier identification in high dimensions using the SIGN2 algorithm |
OutlierSign2.default |
Outlier identification in high dimensions using the SIGN2 algorithm |
OutlierSign2.formula |
Outlier identification in high dimensions using the SIGN2 algorithm |
plot-method |
Class '"Outlier"' - a base class for outlier identification |
plot-method |
Class '"OutlierPCOut"' - Outlier identification in high dimensions using using the PCOUT algorithm |
predict-method |
Class '"Simca"' - virtual base class for all classic and robust SIMCA classes representing classification in high dimensions based on the SIMCA method |
predict-method |
Class '"SosDisc"' - virtual base class for all classic and robust SosDisc classes representing the results of the robust and sparse multigroup classification by the optimal scoring approach |
PredictSimca-class |
Class '"PredictSimca"' - prediction of '"Simca"' objects |
PredictSosDisc-class |
Class '"PredictSosDisc"' - prediction of '"SosDisc"' objects |
RSimca |
Robust classification in high dimensions based on the SIMCA method |
RSimca-class |
Class '"RSimca" - robust classification in high dimensions based on the SIMCA method' |
RSimca.default |
Robust classification in high dimensions based on the SIMCA method |
RSimca.formula |
Robust classification in high dimensions based on the SIMCA method |
show-method |
Class '"Outlier"' - a base class for outlier identification |
show-method |
Class '"PredictSimca"' - prediction of '"Simca"' objects |
show-method |
Class '"PredictSosDisc"' - prediction of '"SosDisc"' objects |
show-method |
Class '"Simca"' - virtual base class for all classic and robust SIMCA classes representing classification in high dimensions based on the SIMCA method |
show-method |
Class '"SosDisc"' - virtual base class for all classic and robust SosDisc classes representing the results of the robust and sparse multigroup classification by the optimal scoring approach |
show-method |
Class '"SummarySimca"' - summary of '"Simca"' objects |
show-method |
Class '"SummarySosDisc"' - summary of '"SosDisc"' objects |
Simca-class |
Class '"Simca"' - virtual base class for all classic and robust SIMCA classes representing classification in high dimensions based on the SIMCA method |
SosDisc-class |
Class '"SosDisc"' - virtual base class for all classic and robust SosDisc classes representing the results of the robust and sparse multigroup classification by the optimal scoring approach |
SosDiscClassic-class |
Class 'SosDiscClassic' - sparse multigroup classification by the optimal scoring approach |
SosDiscRobust |
Robust and sparse multigroup classification by the optimal scoring approach |
SosDiscRobust-class |
Class 'SosDiscRobust' - robust and sparse multigroup classification by the optimal scoring approach |
SosDiscRobust.default |
Robust and sparse multigroup classification by the optimal scoring approach |
SosDiscRobust.formula |
Robust and sparse multigroup classification by the optimal scoring approach |
SPcaGrid |
Sparse Robust Principal Components based on Projection Pursuit (PP): GRID search Algorithm |
SPcaGrid-class |
Class 'SPcaGrid' - Sparse Robust PCA using PP - GRID search Algorithm |
SPcaGrid.default |
Sparse Robust Principal Components based on Projection Pursuit (PP): GRID search Algorithm |
SPcaGrid.formula |
Sparse Robust Principal Components based on Projection Pursuit (PP): GRID search Algorithm |
summary-method |
Class '"Simca"' - virtual base class for all classic and robust SIMCA classes representing classification in high dimensions based on the SIMCA method |
summary-method |
Class '"SosDisc"' - virtual base class for all classic and robust SosDisc classes representing the results of the robust and sparse multigroup classification by the optimal scoring approach |
SummarySimca-class |
Class '"SummarySimca"' - summary of '"Simca"' objects |
SummarySosDisc-class |
Class '"SummarySosDisc"' - summary of '"SosDisc"' objects |